赞
踩
对称多处理器结构 cpu到缓存访问速度一一致
ls /sys/devices/system/node/#
如果只看到一个node0 那就是smp架构
非一致存储访问结构,非均匀访问存储模型,
这种模型的是为了解决smp扩容性很差而提出的技术方案,如果说smp 相当于多个cpu 连接一个内存池导致请求经常发生冲突的话,numa 就是将cpu的资源分开,以node 为单位进行切割,每个node 里有着独有的core ,memory 等资源,这也就导致了cpu在性能使用上的提升,但是同样存在问题就是2个node 之间的资源交互非常慢,当cpu增多的情况下,性能提升的幅度并不是很高。所以可以看到很多明明有很多core的服务器却只有2个node区
java中node列表节点非物理连续存储,节点之间查询通知可能需要经过多的区域会导致一直性能差异。
mpp
海量并行处理结构
NUMA 与 MPP 具有许多相似之处:它们都由多个节点组成,每个节点都具有自己的 CPU 、内存、 I/O ,节点之间都可以通过节点互联机制进行信息交互
NUMA 的节点互联机制是在同一个物理服务器内部实现的,当某个 CPU 需要进行远地内存访问时,它必须等待,这也是 NUMA 服务器无法实现 CPU 增加时性能线性扩展的主要原因。而 MPP 的节点互联机制是在不同的 SMP 服务器外部通过 I/O 实现的,每个节点只访问本地内存和存储,节点之间的信息交互与节点本身的处理是并行进行的。因此 MPP 在增加节点时性能基本上可以实现线性扩展
内存访问机制不同。在 NUMA 服务器内部,任何一个 CPU 可以访问整个系统的内存,但远地访问的性能远远低于本地内存访问,因此在开发应用程序时应该尽量避免远地内存访问。在 MPP 服务器中,每个节点只访问本地内存,不存在远地内存访问的问题
赞
踩
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。