当前位置:   article > 正文

如何用python写程序来追踪目标_python实现单目标、多目标、多尺度、自定义特征的KCF跟踪算法(实例代码)...

python 目标跟踪算法kcf

单目标跟踪:

直接调用opencv中封装的tracker即可。

#!/usr/bin/env python3

# -*- coding: utf-8 -*-

"""

Created on Sun Jan 5 17:50:47 2020

第四章 kcf跟踪

@author: youxinlin

"""

import cv2

from items import MessageItem

import time

import numpy as np

'''

监视者模块,负责入侵检测,目标跟踪

'''

class WatchDog(object):

#入侵检测者模块,用于入侵检测

def __init__(self,frame=None):

#运动检测器构造函数

self._background = None

if frame is not None:

self._background = cv2.GaussianBlur(cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY),(21,21),0)

self.es = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (10, 10))

def isWorking(self):

#运动检测器是否工作

return self._background is not None

def startWorking(self,frame):

#运动检测器开始工作

if frame is not None:

self._background = cv2.GaussianBlur(cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY), (21, 21), 0)

def stopWorking(self):

#运动检测器结束工作

self._background = None

def analyze(self,frame):

#运动检测

if frame is None or self._background is None:

return

sample_frame = cv2.GaussianBlur(cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY),(21,21),0)

diff = cv2.absdiff(self._background,sample_frame)

diff = cv2.threshold(diff, 25, 255, cv2.THRESH_BINARY)[1]

diff = cv2.dilate(diff, self.es, iterations=2)

image, cnts, hierarchy = cv2.findContours(diff.copy(),cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

coordinate = []

bigC = None

bigMulti = 0

for c in cnts:

if cv2.contourArea(c) < 1500:

continue

(x,y,w,h) = cv2.boundingRect(c)

if w * h > bigMulti:

bigMulti = w * h

bigC = ((x,y),(x+w,y+h))

if bigC:

cv2.rectangle(frame, bigC[0],bigC[1], (255,0,0), 2, 1)

coordinate.append(bigC)

message = {"coord":coordinate}

message['msg'] = None

return MessageItem(frame,message)

class Tracker(object):

'''

追踪者模块,用于追踪指定目标

'''

def __init__(self,tracker_type = "BOOSTING",draw_coord = True):

'''

初始化追踪器种类

'''

#获得opencv版本

(major_ver, minor_ver, subminor_ver) = (cv2.__version__).split('.')

self.tracker_types = ['BOOSTING', 'MIL','KCF', 'TLD', 'MEDIANFLOW', 'GOTURN']

self.tracker_type = tracker_type

self.isWorking = False

self.draw_coord = draw_coord

#构造追踪器

if int(minor_ver) < 3:

self.tracker = cv2.Tracker_create(tracker_type)

else:

if tracker_type == 'BOOSTING':

self.tracker = cv2.TrackerBoosting_create()

if tracker_type == 'MIL':

self.tracker = cv2.TrackerMIL_create()

if tracker_type == 'KCF':

self.tracker = cv2.TrackerKCF_create()

if tracker_type == 'TLD':

self.tracker = cv2.TrackerTLD_create()

if tracker_type == 'MEDIANFLOW':

self.tracker = cv2.TrackerMedianFlow_create()

if tracker_type == 'GOTURN':

self.tracker = cv2.TrackerGOTURN_create()

def initWorking(self,frame,box):

'''

追踪器工作初始化

frame:初始化追踪画面

box:追踪的区域

'''

if not self.tracker:

raise Exception("追踪器未初始化")

status = self.tracker.init(frame,box)

if not status:

raise Exception("追踪器工作初始化失败")

self.coord = box

self.isWorking = True

def track(self,frame):

'''

开启追踪

'''

message = None

if self.isWorking:

status,self.coord = self.tracker.update(frame)

if status:

message = {"coord":[((int(self.coord[0]), int(self.coord[1])),(int(self.coord[0] + self.coord[2]), int(self.coord[1] + self.coord[3])))]}

if self.draw_coord:

p1 = (int(self.coord[0]), int(self.coord[1]))

p2 = (int(self.coord[0] + self.coord[2]), int(self.coord[1] + self.coord[3]))

cv2.rectangle(frame, p1, p2, (255,0,0), 2, 1)

message['msg'] = "is tracking"

return MessageItem(frame,message)

class ObjectTracker(object):

def __init__(self,dataSet):

self.cascade = cv2.CascadeClassifier(dataSet)

def track(self,frame):

gray = cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY)

faces = self.cascade.detectMultiScale(gray,1.03,5)

for (x,y,w,h) in faces:

cv2.rectangle(frame,(x,y),(x+w,y+h),(0,0,255),2)

return frame

if __name__ == '__main__' :

# tracker_types = ['BOOSTING', 'MIL','KCF', 'TLD', 'MEDIANFLOW', 'GOTURN']

tracker = Tracker(tracker_type="KCF")

# video = cv2.VideoCapture(0)

# video = cv2.VideoCapture("complex1.mov")

video = cv2.VideoCapture(r"/Users/youxinlin/Desktop/video_data/complex1.MOV")

ok, frame = video.read()

bbox = cv2.selectROI(frame, False)

tracker.initWorking(frame,bbox)

while True:

_,frame = video.read();

if(_):

item = tracker.track(frame);

cv2.imshow("track",item.getFrame())

k = cv2.waitKey(1) & 0xff

if k == 27:

break

附带items.py,放在同个文件夹下:

#!/usr/bin/env python3

# -*- coding: utf-8 -*-

"""

Created on Sun Jan 5 17:51:04 2020

@author: youxinlin

"""

import json

from utils import IOUtil

'''

信息封装类

'''

class MessageItem(object):

#用于封装信息的类,包含图片和其他信息

def __init__(self,frame,message):

self._frame = frame

self._message = message

def getFrame(self):

#图片信息

return self._frame

def getMessage(self):

#文字信息,json格式

return self._message

def getBase64Frame(self):

#返回base64格式的图片,将BGR图像转化为RGB图像

jepg = IOUtil.array_to_bytes(self._frame[...,::-1])

return IOUtil.bytes_to_base64(jepg)

def getBase64FrameByte(self):

#返回base64格式图片的bytes

return bytes(self.getBase64Frame())

def getJson(self):

#获得json数据格式

dicdata = {"frame":self.getBase64Frame().decode(),"message":self.getMessage()}

return json.dumps(dicdata)

def getBinaryFrame(self):

return IOUtil.array_to_bytes(self._frame[...,::-1])

utils.py:也放在同一个文件夹下。

#!/usr/bin/env python3

# -*- coding: utf-8 -*-

"""

Created on Sun Jan 5 17:51:40 2020

@author: youxinlin

"""

import time

import numpy

import base64

import os

import logging

import sys

from PIL import Image

from io import BytesIO

#工具类

class IOUtil(object):

#流操作工具类

@staticmethod

def array_to_bytes(pic,formatter="jpeg",quality=70):

'''

静态方法,将numpy数组转化二进制流

:param pic: numpy数组

:param format: 图片格式

:param quality:压缩比,压缩比越高,产生的二进制数据越短

:return:

'''

stream = BytesIO()

picture = Image.fromarray(pic)

picture.save(stream,format=formatter,quality=quality)

jepg = stream.getvalue()

stream.close()

return jepg

@staticmethod

def bytes_to_base64(byte):

'''

静态方法,bytes转base64编码

:param byte:

:return:

'''

return base64.b64encode(byte)

@staticmethod

def transport_rgb(frame):

'''

将bgr图像转化为rgb图像,或者将rgb图像转化为bgr图像

'''

return frame[...,::-1]

@staticmethod

def byte_to_package(bytes,cmd,var=1):

'''

将每一帧的图片流的二进制数据进行分包

:param byte: 二进制文件

:param cmd:命令

:return:

'''

head = [ver,len(byte),cmd]

headPack = struct.pack("!3I", *head)

senddata = headPack+byte

return senddata

@staticmethod

def mkdir(filePath):

'''

创建文件夹

'''

if not os.path.exists(filePath):

os.mkdir(filePath)

@staticmethod

def countCenter(box):

'''

计算一个矩形的中心

'''

return (int(abs(box[0][0] - box[1][0])*0.5) + box[0][0],int(abs(box[0][1] - box[1][1])*0.5) +box[0][1])

@staticmethod

def countBox(center):

'''

根据两个点计算出,x,y,c,r

'''

return (center[0][0],center[0][1],center[1][0]-center[0][0],center[1][1]-center[0][1])

@staticmethod

def getImageFileName():

return time.strftime("%Y_%m_%d_%H_%M_%S", time.localtime())+'.png'

多目标跟踪:

和单目标差不多,改用MultiTracker_create()

#!/usr/bin/env python3

# -*- coding: utf-8 -*-

"""

Created on Sun Jan 5 18:02:33 2020

多目标跟踪

@author: youxinlin

"""import numpy as np

import cv2

import sys

'''

if len(sys.argv) != 2:

print('Input video name is missing')

exit()

'''

print('Select multiple tracking targets')

cv2.namedWindow("tracking")

camera = cv2.VideoCapture(r"/Users/youxinlin/Desktop/video_data/complex6.MOV")

#camera = cv2.VideoCapture(0)

tracker = cv2.MultiTracker_create() #多目标跟踪

a= cv2.Tracker_c

init_once = False

ok, image=camera.read()

if not ok:

print('Failed to read video')

exit()

bbox1 = cv2.selectROI('tracking', image)

bbox2 = cv2.selectROI('tracking', image)

bbox3 = cv2.selectROI('tracking', image)

while camera.isOpened():

ok, image=camera.read()

if not ok:

print ('no image to read')

break

if not init_once:

ok = tracker.add(cv2.TrackerKCF_create(),image,bbox1)

ok = tracker.add(cv2.TrackerKCF_create( ),image, bbox2)

ok = tracker.add(cv2.TrackerKCF_create(),image, bbox3)

init_once = True

ok, boxes = tracker.update(image)

for newbox in boxes:

p1 = (int(newbox[0]), int(newbox[1]))

p2 = (int(newbox[0] + newbox[2]), int(newbox[1] + newbox[3]))

cv2.rectangle(image, p1, p2, (0,0,255))

cv2.imshow('tracking', image)

k = cv2.waitKey(1)

if k == 27 : break # esc pressed

多尺度检测的KCF、自定义所用特征的KCF

在一些场景下,不想使用默认的hog特征跟踪,或需要对比不同特征的跟踪效果,那么封装好的方法似乎不可用,需要可以自己撸一波kcf的代码,从而使用自己设定的特征。

总结

以上所述是小编给大家介绍的python实现单目标、多目标、多尺度、自定义特征的KCF跟踪算法,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对脚本之家网站的支持!如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/Monodyee/article/detail/78530
推荐阅读
相关标签
  

闽ICP备14008679号