当前位置:   article > 正文

OpenVINO之四:转换TensorFlow模型_openvino转换tensorflow模型

openvino转换tensorflow模型

1

2 OpenVINO支持的TENSORFLOW模型

  • Inception v1 、 Inception v2、 Inception v3 、Inception V4 、 Inception ResNet v2
  • MobileNet v1 128、 MobileNet v1 160 、MobileNet v1 224
  • NasNet Large 、 NasNet Mobile
  • ResidualNet-50 、ResidualNet-101 、ResidualNet-152
  • VGG-16 、VGG-19

3 OpenVINO支持的TENSORFLOW层与其在Intermediate Representation (IR)中的对应关系

NUMBEROPERATION NAME IN TENSORFLOWLAYER NAME IN THE INTERMEDIATE REPRESENTATION
1TransposePermute
2LRNNorm
3SplitSplit
4SplitVSplit
5FusedBatchNormScaleShift (can be fused into Convolution or FullyConnected)
6Relu6Clamp
7DepthwiseConv2dNativeConvolution
8ExpandDimsConstant propagation
9SliceSplit
10ConcatV2Concat
11MatMulFullyConnected
12PackReshapes and Concat
13StridedSliceConstant propagation and several cases when StridedSlice can be expressed with Splits
14ProdConstant propagation
15ConstConstant propagation
16TileTile
17PlaceholderInput
18PadFused into Convolution or Pooling layers (not supported as single operation)
19Conv2DConvolution
20Conv2DBackpropInputDeconvolution
21IdentityIgnored, does not appear in the IR
22AddEltwise(operation = sum)
23MulEltwise(operation = mul)
24Maximum
25RsqrtPower(power=-0.5)
26NegPower(scale=-1)
27SubEltwise(operation = sum) + Power(scale=-1)
28ReluReLU
29AvgPoolPooling (pool_method=avg)
30MaxPoolPooling (pool_method=max)
31MeanPooling (pool_method = avg); spatial dimensions are supported only
32RandomUniformNot supported
33BiasAddFused or converted to ScaleShift
34ReshapeReshape
35SqueezeReshape
36ShapeConstant propagation (or layer generation if the “–keep_shape_ops” command line parameter has been specified)
37SoftmaxSoftMax
38SpaceToBatchNDSupported in a pattern when converted to Convolution layer dilation attribute, Constant propagation
39BatchToSpaceNDSupported in a pattern when converted to Convolution layer dilation attribute, Constant propagation
40StopGradient
41Square Constant propagation
42SumPool(pool_method = avg) + Eltwise(operation = mul)
43RangeConstant propagation
44CropAndResizeROIPooling (if the the method is ‘bilinear’)
45ArgMaxArgMax
46DepthToSpaceReshape + Permute + Reshape (works for CPU only because of 6D tensors)
47ExtractImagePatchesReorgYolo
48ResizeBilinearInterp
49ResizeNearestNeighborResample
50UnpackSplit + Reshape (removes dimension being unpacked) if the number of parts is equal to size along given axis
51AddNSeveral Eltwises
52ConcatConcat
53MinimumPower(scale=-1) + Eltwise(operation = max) + Power(scale=-1)
54UnsqueezeReshape
55RealDivPower(power = -1) and Eltwise(operation = mul)
56SquaredDifferencePower(scale = -1) + Eltwise(operation = sum) + Power(power = 2)
57GatherGather
58GatherV2Gather
59ResourceGatherGather
60SqrtPower(power=0.5)
61SquarePower(power=2)
62PadPad
63PadV2Pad
64MirrorPadPad
65ReverseSequenceReverseSequence
66ZerosLike Constantpropagation

参考资料:
1 Converting a TensorFlow* Model
2 Supported Framework Layers

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/weixin_40725706/article/detail/161465?site
推荐阅读
相关标签
  

闽ICP备14008679号