赞
踩
插值请见此知乎笔记:
https://zhuanlan.zhihu.com/p/390028714
import numpy as np
import matplotlib.pyplot as plt
from scipy.interpolate import interp1d
x=np.arange(0,25,2)
y=np.array([12,9,9,10,18,24,28,27,25,20,18,15,13])
xnew=np.linspace(0,24,500)
print(xnew)
f1=interp1d(x,y);y1=f1(xnew);
f2=interp1d(x,y,'cubic');y2=f2(xnew);
plt.rc('font',size=16);plt.rc('font',family='SimHei')
plt.subplot(121),plt.plot(xnew,y1);plt.xlabel("分段线性插值")
plt.subplot(122);plt.plot(xnew,y2);plt.xlabel("三次样条插值")
plt.show()
ps:
#程序文件名Pex7_5.py from mpl_toolkits import mplot3d import matplotlib.pyplot as plt import numpy as np from numpy.linalg import norm from scipy.interpolate import interp2d z=np.loadtxt("Pdata7_5.txt") #加载高程数据 x=np.arange(0,1500,100) y=np.arange(1200,-100,-100) f=interp2d(x, y, z, 'cubic') xn=np.linspace(0,1400,141) yn=np.linspace(0,1200,121) zn=f(xn, yn) m=len(xn); n=len(yn); s=0; for i in np.arange(m-1): for j in np.arange(n-1): p1=np.array([xn[i],yn[j],zn[j,i]]) p2=np.array([xn[i+1],yn[j],zn[j,i+1]]) p3=np.array([xn[i+1],yn[j+1],zn[j+1,i+1]]) p4=np.array([xn[i],yn[j+1],zn[j+1,i]]) p12=norm(p1-p2); p23=norm(p3-p2); p13=norm(p3-p1); p14=norm(p4-p1); p34=norm(p4-p3); L1=(p12+p23+p13)/2;s1=np.sqrt(L1*(L1-p12)*(L1-p23)*(L1-p13)); L2=(p13+p14+p34)/2; s2=np.sqrt(L2*(L2-p13)*(L2-p14)*(L2-p34)); s=s+s1+s2; print("区域的面积为:", s) plt.rc('font',size=16);plt.rc('font',family='SimHei') plt.subplot(121) C = plt.contour(xn,yn,zn, 8, colors='black') # 8代表等高线的密集程度,这里被分为10个部分。如果是0,则图像被一分为二。 # 可以将其设置为 20观察变化; # 等高线之间的颜色填充,可选 plt.contourf(xn,yn,zn, 8, alpha=.75, cmap='gray_r') plt.clabel(C, inline=True, fontsize=10) # inline=True,表示高度写在等高线上 # 关闭坐标轴 plt.xticks([]) plt.yticks([]) ax=plt.subplot(122,projection='3d'); X,Y=np.meshgrid(xn,yn) ax.plot_surface(X, Y, zn,cmap='viridis') ax.set_xlabel('$x$'); ax.set_ylabel('$y$'); ax.set_zlabel('$z$') plt.show() # # plt.rc('font',size=16); plt.rc('text',usetex=True) # plt.subplot(121); contr=plt.contour(xn,yn,zn) # plt.clabel(contr) # #plt.xlabel('$x$'); plt.ylabel('$y$',rotation=90) # ax=plt.subplot(122,projection='3d'); # X,Y=np.meshgrid(xn,yn) # ax.plot_surface(X, Y, zn,cmap='viridis') # ax.set_xlabel('$x$'); ax.set_ylabel('$y$'); ax.set_zlabel('$z$') # # plt.savefig('figure7_5.png',dpi=500); plt.show()
#程序文件名Pex7_6.py from mpl_toolkits import mplot3d import matplotlib.pyplot as plt import numpy as np from scipy.interpolate import griddata x=np.array([129,140,103.5,88,185.5,195,105,157.5,107.5,77,81,162,162,117.5]) y=np.array([7.5,141.5,23,147,22.5,137.5,85.5,-6.5,-81,3,56.5,-66.5,84,-33.5]) z=-np.array([4,8,6,8,6,8,8,9,9,8,8,9,4,9]) xy=np.vstack([x,y]).T xn=np.linspace(x.min(), x.max(), 100) yn=np.linspace(y.min(), y.max(), 100) xng, yng = np.meshgrid(xn,yn) #构造网格节点 zn=griddata(xy, z, (xng, yng), method='nearest') #最近邻点插值 plt.rc('font',size=16);plt.rc('font',family='SimHei') plt.subplot(121) C = plt.contour(xn,yn,zn, 8, colors='black') # 8代表等高线的密集程度,这里被分为10个部分。如果是0,则图像被一分为二。 # 可以将其设置为 20观察变化; # 等高线之间的颜色填充,可选 plt.contourf(xn,yn,zn, 8, alpha=.75, cmap='gray_r') plt.clabel(C, inline=True, fontsize=10) # inline=True,表示高度写在等高线上 # 关闭坐标轴 plt.xticks([]) plt.yticks([]) ax=plt.subplot(121,projection='3d'); ax.plot_surface(xng, yng, zn,cmap='viridis') ax.set_xlabel('$x$'); ax.set_ylabel('$y$'); ax.set_zlabel('$z$') # plt.rc('font',size=16); plt.rc('text',usetex=True) ax=plt.subplot(121,projection='3d'); ax.plot_surface(xng, yng, zn,cmap='viridis') ax.set_xlabel('$x$'); ax.set_ylabel('$y$'); ax.set_zlabel('$z$') plt.subplot(122) C = plt.contour(xn,yn,zn,8, colors='black') # # 8代表等高线的密集程度,这里被分为10个部分。如果是0,则图像被一分为二。 # # 可以将其设置为 20观察变化; # # 等高线之间的颜色填充,可选 # plt.contourf(xn,yn,zn, 8, alpha=.75, cmap='gray_r') plt.clabel(C, inline=True, fontsize=10) # # inline=True,表示高度写在等高线上 # # 关闭坐标轴 plt.xticks([]) plt.yticks([]) plt.show()
理论请见《python数学建模与实验》242页
#程序文件名Pex7_7.py
from numpy import polyfit, polyval, array, arange
from matplotlib.pyplot import plot,show,rc
x0=arange(0, 1.1, 0.1)
y0=array([-0.447, 1.978, 3.28, 6.16, 7.08, 7.34, 7.66, 9.56, 9.48, 9.30, 11.2])
p=polyfit(x0, y0, 2) #拟合二次多项式
print("拟合二次多项式的从高次幂到低次幂系数分别为:",p)
yhat=polyval(p,[0.25, 0.35]); print("预测值分别为:", yhat)
rc('font',size=16)
plot(x0, y0, '*', x0, polyval(p, x0), '-'); show()
import numpy as np
from scipy.optimize import curve_fit
y=lambda x, a, b, c: a*x**2+b*x+c
x0=np.arange(0, 1.1, 0.1)
y0=np.array([-0.447, 1.978, 3.28, 6.16, 7.08, 7.34, 7.66, 9.56, 9.48, 9.30, 11.2])
popt, pcov=curve_fit(y, x0, y0)
print("拟合的参数值为:", popt)
print("预测值分别为:", y(np.array([0.25, 0.35]), *popt))
from mpl_toolkits import mplot3d import numpy as np from scipy.optimize import curve_fit import matplotlib.pyplot as plt m=200; n=300 x=np.linspace(-6, 6, m); y=np.linspace(-8, 8, n); x2, y2 = np.meshgrid(x, y) x3=np.reshape(x2,(1,-1)); y3=np.reshape(y2, (1,-1)) xy=np.vstack((x3,y3)) def Pfun(t, m1, m2, s): return np.exp(-((t[0]-m1)**2+(t[1]-m2)**2)/(2*s**2)) z=Pfun(xy, 1, 2, 3); zr=z+0.2*np.random.normal(size=z.shape) #噪声数据 popt, pcov=curve_fit(Pfun, xy, zr) #拟合参数 print("三个参数的拟合值分别为:",popt) zn=Pfun(xy, *popt) #计算拟合函数的值 zn2=np.reshape(zn, x2.shape) plt.rc('font',size=16) ax=plt.axes(projection='3d') #创建一个三维坐标轴对象 ax.plot_surface(x2, y2, zn2,cmap='gist_rainbow') plt.savefig("figure7_10.png", dpi=500); plt.show()
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。