当前位置:   article > 正文

Grander因果检验(格兰杰)原理+操作+解释_格兰杰因果检验的滞后期怎么选

格兰杰因果检验的滞后期怎么选

笔记来源:
1.【传送门
2.【传送门

前沿原理介绍

Grander因果检验是一种分析时间序列数据因果关系的方法。
在这里插入图片描述
基本思想在于,在控制Y的滞后项 (过去值) 的情况下,如果X的滞后项仍然有助于解释Y的当期值的变动,则认为 X对 Y产生因果影响。

操作与解释

基于stata实现

  • 准备的数据是时间序列数据

  • 在这里插入图片描述

  • 命令
    1.var y x,lag(1)第一步

    2.vargranger第二步
    在这里插入图片描述
    故结果是双向因果

缺陷

  • 关联与因果之间的区别: Granger因果检验只能检测到变量之间的时间序列关联关系,而不能确定这种关系的方向。即使Granger因果检验显示两个变量之间存在因果关系,这并不意味着其中一个变量的变化导致了另一个变量的变化,因为Granger因果检验无法解释这种关系的机制。

  • 滞后阶数的选择: Granger因果检验中需要选择滞后阶数(lag order),即用多少期的滞后值作为因果关系的判断依据。不同的滞后阶数可能导致不同的结果,而选择合适的滞后阶数通常需要依赖经验或其他理论依据,这可能引入主观因素。

  • 小样本效应: 在小样本情况下,Granger因果检验的统计功效较低,可能难以检测到真实的因果关系。因此,在小样本情况下,结果的解释应该更加谨慎。

  • 外生变量未控制: Granger因果检验通常假设没有未观测到的外生变量影响被考察的两个变量,如果存在未观测到的外生变量,Granger因果检验的结果可能受到影响。

  • 时间变化的影响: Granger因果检验的结果可能受到时间趋势和季节性等时间变化的影响,如果这些因素没有被适当地控制,可能导致因果关系的误判。

  • 方向性的局限性: Granger因果关系并不表示因果关系的方向。两个变量相互Granger因果并不意味着它们之间的因果关系是单向的。

  • 线性关系的假设: Granger因果检验基于线性关系的假设,可能无法捕捉非线性关系的因果关系。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/weixin_40725706/article/detail/238865
推荐阅读
相关标签
  

闽ICP备14008679号