赞
踩
最近研究了自动白平衡的几种方法,参考了不少,最为感谢python opencv白平衡算法(但是这篇文章提供的算法没有考虑到uint8格式问题,产生了图像的局部失真,这里做了改进):(<-原图,失真图->)
谈谈总体理解:
(本来目标是同一张图,无论在什么样子的滤镜、光照下最后白平衡结果要尽可能相同,最后发现都太难了)
1.均值、灰度世界都建立一种计算平均的算法基础上,适用于色彩分布比较全面平均的场景,其实在很多场合都不适用
2.完美反射、动态阈值建立在白点的基础上,比如完美反射认为最亮的点为白点,以白点为基础进行整体的调节,导致的问题在于如果整张图没有白点算法效果非常不好,其次,由于不同色温下白点所呈现的数值差异性很大,导致白平衡结果不尽如人意。且Ratio的选取也有效果差异。还有一种做法是固定某一区域为白色区域然后算法计算,延展全图,效果展示使用uint8格式时一定要注意的问题(python-opencv完美反射白平衡算法)
3.基于图像分析的偏色检测及颜色校正,看了这篇原文,感觉整体意思是提供一种偏色检测的做法,然后还是采用基于完美反射、灰度世界的改进算法进行白平衡,效果同样局限。
结果展示,在不同的场景下每种白平衡结果都有不同,没有通用性的最好算法:
- 第一张: 原图
- 第二张:均值白平衡法
- 第三张: 完美反射
- 第四张: 灰度世界假设
- 第五张: 基于图像分析的偏色检测及颜色校正方法
- 第六张: 动态阈值算法
源码:
- import cv2
- import numpy as np
- import random
-
- def white_balance_1(img):
- '''
- 第一种简单的求均值白平衡法
- :param img: cv2.imread读取的图片数据
- :return: 返回的白平衡结果图片数据
- '''
- # 读取图像
- r, g, b = cv2.split(img)
- r_avg = cv2.mean(r)[0]
- g_avg = cv2.mean(g)[0]
- b_avg = cv2.mean(b)[0]
- # 求各个通道所占增益
- k = (r_avg + g_avg + b_avg) / 3
- kr = k / r_avg
- kg = k / g_avg
- kb = k / b_avg
- r = cv2.addWeighted(src1=r, alpha=kr, src2=0, beta=0, gamma=0)
- g = cv2.addWeighted(src1=g, alpha=kg, src2=0, beta=0, gamma=0)
- b = cv2.addWeighted(src1=b, alpha=kb, src2=0, beta=0, gamma=0)
- balance_img = cv2.merge([b, g, r])
- return balance_img
-
- def white_balance_2(img_input):
- '''
- 完美反射白平衡
- STEP 1:计算每个像素的R\G\B之和
- STEP 2:按R+G+B值的大小计算出其前Ratio%的值作为参考点的的阈值T
- STEP 3:对图像中的每个点,计算其中R+G+B值大于T的所有点的R\G\B分量的累积和的平均值
- STEP 4:对每个点将像素量化到[0,255]之间
- 依赖ratio值选取而且对亮度最大区域不是白色的图像效果不佳。
- :param img: cv2.imread读取的图片数据
- :return: 返回的白平衡结果图片数据
- '''
- img = img_input.copy()
- b, g, r = cv2.split(img)
- m, n, t = img.shape
- sum_ = np.zeros(b.shape)
- for i in range(m):
- for j in range(n):
- sum_[i][j] = int(b[i][j]) + int(g[i][j]) + int(r[i][j])
- hists, bins = np.histogram(sum_.flatten(), 766, [0, 766])
- Y = 765
- num, key = 0, 0
- ratio = 0.01
- while Y >= 0:
- num += hists[Y]
- if num > m * n * ratio / 100:
- key = Y
- break
- Y = Y - 1
-
- sum_b, sum_g, sum_r = 0, 0, 0
- time = 0
- for i in range(m):
- for j in range(n):
- if sum_[i][j] >= key:
- sum_b += b[i][j]
- sum_g += g[i][j]
- sum_r += r[i][j]
- time = time + 1
-
- avg_b = sum_b / time
- avg_g = sum_g / time
- avg_r = sum_r / time
-
- maxvalue = float(np.max(img))
- # maxvalue = 255
- for i in range(m):
- for j in range(n):
- b = int(img[i][j][0]) * maxvalue / int(avg_b)
- g = int(img[i][j][1]) * maxvalue / int(avg_g)
- r = int(img[i][j][2]) * maxvalue / int(avg_r)
- if b > 255:
- b = 255
- if b < 0:
- b = 0
- if g > 255:
- g = 255
- if g < 0:
- g = 0
- if r > 255:
- r = 255
- if r < 0:
- r = 0
- img[i][j][0] = b
- img[i][j][1] = g
- img[i][j][2] = r
-
- return img
-
- def white_balance_3(img):
- '''
- 灰度世界假设
- :param img: cv2.imread读取的图片数据
- :return: 返回的白平衡结果图片数据
- '''
- B, G, R = np.double(img[:, :, 0]), np.double(img[:, :, 1]), np.double(img[:, :, 2])
- B_ave, G_ave, R_ave = np.mean(B), np.mean(G), np.mean(R)
- K = (B_ave + G_ave + R_ave) / 3
- Kb, Kg, Kr = K / B_ave, K / G_ave, K / R_ave
- Ba = (B * Kb)
- Ga = (G * Kg)
- Ra = (R * Kr)
-
- for i in range(len(Ba)):
- for j in range(len(Ba[0])):
- Ba[i][j] = 255 if Ba[i][j] > 255 else Ba[i][j]
- Ga[i][j] = 255 if Ga[i][j] > 255 else Ga[i][j]
- Ra[i][j] = 255 if Ra[i][j] > 255 else Ra[i][j]
-
- # print(np.mean(Ba), np.mean(Ga), np.mean(Ra))
- dst_img = np.uint8(np.zeros_like(img))
- dst_img[:, :, 0] = Ba
- dst_img[:, :, 1] = Ga
- dst_img[:, :, 2] = Ra
- return dst_img
-
-
- def white_balance_4(img):
- '''
- 基于图像分析的偏色检测及颜色校正方法
- :param img: cv2.imread读取的图片数据
- :return: 返回的白平衡结果图片数据
- '''
-
- def detection(img):
- '''计算偏色值'''
- img_lab = cv2.cvtColor(img, cv2.COLOR_BGR2LAB)
- l, a, b = cv2.split(img_lab)
- d_a, d_b, M_a, M_b = 0, 0, 0, 0
- for i in range(m):
- for j in range(n):
- d_a = d_a + a[i][j]
- d_b = d_b + b[i][j]
- d_a, d_b = (d_a / (m * n)) - 128, (d_b / (n * m)) - 128
- D = np.sqrt((np.square(d_a) + np.square(d_b)))
-
- for i in range(m):
- for j in range(n):
- M_a = np.abs(a[i][j] - d_a - 128) + M_a
- M_b = np.abs(b[i][j] - d_b - 128) + M_b
-
- M_a, M_b = M_a / (m * n), M_b / (m * n)
- M = np.sqrt((np.square(M_a) + np.square(M_b)))
- k = D / M
- print('偏色值:%f' % k)
- return
-
- b, g, r = cv2.split(img)
- # print(img.shape)
- m, n = b.shape
- # detection(img)
-
- I_r_2 = np.zeros(r.shape)
- I_b_2 = np.zeros(b.shape)
- sum_I_r_2, sum_I_r, sum_I_b_2, sum_I_b, sum_I_g = 0, 0, 0, 0, 0
- max_I_r_2, max_I_r, max_I_b_2, max_I_b, max_I_g = int(r[0][0] ** 2), int(r[0][0]), int(b[0][0] ** 2), int(b[0][0]), int(g[0][0])
- for i in range(m):
- for j in range(n):
- I_r_2[i][j] = int(r[i][j] ** 2)
- I_b_2[i][j] = int(b[i][j] ** 2)
- sum_I_r_2 = I_r_2[i][j] + sum_I_r_2
- sum_I_b_2 = I_b_2[i][j] + sum_I_b_2
- sum_I_g = g[i][j] + sum_I_g
- sum_I_r = r[i][j] + sum_I_r
- sum_I_b = b[i][j] + sum_I_b
- if max_I_r < r[i][j]:
- max_I_r = r[i][j]
- if max_I_r_2 < I_r_2[i][j]:
- max_I_r_2 = I_r_2[i][j]
- if max_I_g < g[i][j]:
- max_I_g = g[i][j]
- if max_I_b_2 < I_b_2[i][j]:
- max_I_b_2 = I_b_2[i][j]
- if max_I_b < b[i][j]:
- max_I_b = b[i][j]
-
- [u_b, v_b] = np.matmul(np.linalg.inv([[sum_I_b_2, sum_I_b], [max_I_b_2, max_I_b]]), [sum_I_g, max_I_g])
- [u_r, v_r] = np.matmul(np.linalg.inv([[sum_I_r_2, sum_I_r], [max_I_r_2, max_I_r]]), [sum_I_g, max_I_g])
- # print(u_b, v_b, u_r, v_r)
- b0, g0, r0 = np.zeros(b.shape, np.uint8), np.zeros(g.shape, np.uint8), np.zeros(r.shape, np.uint8)
- for i in range(m):
- for j in range(n):
- b_point = u_b * (b[i][j] ** 2) + v_b * b[i][j]
- g0[i][j] = g[i][j]
- # r0[i][j] = r[i][j]
- r_point = u_r * (r[i][j] ** 2) + v_r * r[i][j]
- if r_point>255:
- r0[i][j] = 255
- else:
- if r_point<0:
- r0[i][j] = 0
- else:
- r0[i][j] = r_point
- if b_point>255:
- b0[i][j] = 255
- else:
- if b_point<0:
- b0[i][j] = 0
- else:
- b0[i][j] = b_point
- return cv2.merge([b0, g0, r0])
-
- def white_balance_5(img):
- '''
- 动态阈值算法
- 算法分为两个步骤:白点检测和白点调整。
- 只是白点检测不是与完美反射算法相同的认为最亮的点为白点,而是通过另外的规则确定
- :param img: cv2.imread读取的图片数据
- :return: 返回的白平衡结果图片数据
- '''
-
- b, g, r = cv2.split(img)
- """
- YUV空间
- """
- def con_num(x):
- if x > 0:
- return 1
- if x < 0:
- return -1
- if x == 0:
- return 0
- yuv_img = cv2.cvtColor(img, cv2.COLOR_BGR2YCrCb)
- (y, u, v) = cv2.split(yuv_img)
- # y, u, v = cv2.split(img)
- m, n = y.shape
- sum_u, sum_v = 0, 0
- max_y = np.max(y.flatten())
- # print(max_y)
- for i in range(m):
- for j in range(n):
- sum_u = sum_u + u[i][j]
- sum_v = sum_v + v[i][j]
-
- avl_u = sum_u / (m * n)
- avl_v = sum_v / (m * n)
- du, dv = 0, 0
- # print(avl_u, avl_v)
- for i in range(m):
- for j in range(n):
- du = du + np.abs(u[i][j] - avl_u)
- dv = dv + np.abs(v[i][j] - avl_v)
-
- avl_du = du / (m * n)
- avl_dv = dv / (m * n)
- num_y, yhistogram, ysum = np.zeros(y.shape), np.zeros(256), 0
- radio = 0.5 # 如果该值过大过小,色温向两极端发展
- for i in range(m):
- for j in range(n):
- value = 0
- if np.abs(u[i][j] - (avl_u + avl_du * con_num(avl_u))) < radio * avl_du or np.abs(
- v[i][j] - (avl_v + avl_dv * con_num(avl_v))) < radio * avl_dv:
- value = 1
- else:
- value = 0
-
- if value <= 0:
- continue
- num_y[i][j] = y[i][j]
- yhistogram[int(num_y[i][j])] = 1 + yhistogram[int(num_y[i][j])]
- ysum += 1
- # print(yhistogram.shape)
- sum_yhistogram = 0
- # hists2, bins = np.histogram(yhistogram, 256, [0, 256])
- # print(hists2)
- Y = 255
- num, key = 0, 0
- while Y >= 0:
- num += yhistogram[Y]
- if num > 0.1 * ysum: # 取前10%的亮点为计算值,如果该值过大易过曝光,该值过小调整幅度小
- key = Y
- break
- Y = Y - 1
- # print(key)
- sum_r, sum_g, sum_b, num_rgb = 0, 0, 0, 0
- for i in range(m):
- for j in range(n):
- if num_y[i][j] > key:
- sum_r = sum_r + r[i][j]
- sum_g = sum_g + g[i][j]
- sum_b = sum_b + b[i][j]
- num_rgb += 1
-
- avl_r = sum_r / num_rgb
- avl_g = sum_g / num_rgb
- avl_b = sum_b / num_rgb
-
- for i in range(m):
- for j in range(n):
- b_point = int(b[i][j]) * int(max_y) / avl_b
- g_point = int(g[i][j]) * int(max_y) / avl_g
- r_point = int(r[i][j]) * int(max_y) / avl_r
- if b_point>255:
- b[i][j] = 255
- else:
- if b_point<0:
- b[i][j] = 0
- else:
- b[i][j] = b_point
- if g_point>255:
- g[i][j] = 255
- else:
- if g_point<0:
- g[i][j] = 0
- else:
- g[i][j] = g_point
- if r_point>255:
- r[i][j] = 255
- else:
- if r_point<0:
- r[i][j] = 0
- else:
- r[i][j] = r_point
-
- return cv2.merge([b, g, r])
-
- '''
- img : 原图
- img1:均值白平衡法
- img2: 完美反射
- img3: 灰度世界假设
- img4: 基于图像分析的偏色检测及颜色校正方法
- img5: 动态阈值算法
- '''
- img = cv2.imread('./dataset/1/3.JPG')
- # img = cv2.imread('./dataset/2/1_'+str(i)+'.JPG')
- img1 = white_balance_1(img)
- img2 = white_balance_2(img)
- img3 = white_balance_3(img)
- img4 = white_balance_4(img)
- img5 = white_balance_5(img)
- print('----------------------')
-
- img_stack = np.vstack([img,img1,img2,img3,img4,img5])
- # cv2.imwrite("./dataset/"+str(i)+'.JPG',img_stack)
- cv2.imshow('image',img_stack)
- cv2.waitKey(0)

Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。