当前位置:   article > 正文

yolov5+bytetrack算法在华为NPU上进行端到端开发_acllite dvpp

acllite dvpp

        自从毕业后开始进入了华为曻腾生态圈,现在越来越多的公司开始走国产化路线了,现在国内做AI芯片的厂商比如:寒武纪、地平线等,虽然我了解的不多,但是相对于瑞芯微这样的AI开发板来说,华为曻腾的生态比瑞芯微好太多了,参考文档非常多,学习资料也有很多,也容易上手开发。

华为曻腾官网:昇腾AI应用案例-昇腾社区 (hiascend.com)

        直接步入正题,现在的目标检测已经很成熟了,所以越来越多的公司会用到基于检测的跟踪算法,这样不仅起到了单一检测功能,还有跟踪目标或者计数的功能;

        现在应用较广泛的目标检测算法从最开始的yolov5一直到现在的yolov8,虽然只是简单的看了一下算法的原理,整体来说yolo的更新还是针对神经网络在GPU上的优化加速,而对比曻腾NPU,yolov5的速度还是在其他yolo算法中速度最快的一个;

        目标跟踪算法以前是sort+yolo,deepsort+yolo,bytetrack,fairmot等算法,本章主要介绍如何利用华为的ACL语言+ffmpeg推流进行整个业务的开发流程,大家可以借鉴下面的开发代码,首先你要具备基本的ACL语言知识,以及yolov5的后处理逻辑,跟踪方面直接借鉴开源作者的卡尔曼滤波进行预测更新即可:参考主函数代码如下:

  1. //1.先测试yolov5_nms可以泡桐?
  2. //使用dvpp+aipp编解码再使用opencv进行
  3. #include<iostream>
  4. #include"acl/acl.h"
  5. #include "opencv2/opencv.hpp"
  6. #include "opencv2/imgproc/types_c.h"
  7. #include "acllite/AclLiteUtils.h"
  8. #include "acllite/AclLiteError.h"
  9. #include "acllite/AclLiteResource.h"
  10. #include "acllite/AclLiteModel.h"
  11. #include "acllite/AclLiteImageProc.h"
  12. #include "AclLiteVideoProc.h"
  13. #include "AclLiteVideoCapBase.h"
  14. #include "BYTETracker.h"
  15. #include <chrono>
  16. extern"C" {
  17. #include <libavutil/mathematics.h>
  18. #include <libavutil/time.h>
  19. #include "libavcodec/avcodec.h"
  20. #include "libavformat/avformat.h"
  21. #include "libswscale/swscale.h"
  22. #include "libavutil/imgutils.h"
  23. #include "libavutil/opt.h"
  24. };
  25. using namespace std;
  26. using namespace cv;
  27. typedef struct box {
  28. float x;
  29. float y;
  30. float w;
  31. float h;
  32. float score;
  33. size_t classIndex;
  34. size_t index; // index of output buffer
  35. } box;
  36. namespace{
  37. int a = 0;
  38. }
  39. int main()
  40. {
  41. //1.定义初始化变量dvpp\model\acl\rtsp解码接口cap
  42. AclLiteResource aclDev;
  43. aclrtRunMode g_runMode_;
  44. AclLiteVideoProc* cap_;
  45. AclLiteImageProc g_dvpp_;
  46. AclLiteModel g_model_;
  47. string streamName_;
  48. streamName_ = "rtsp://admin:ascend666@10.1.16.108/LiveMedia/ch1/Media1";
  49. //ffmpeg初始化
  50. AVFormatContext* g_fmtCtx;
  51. AVCodecContext* g_codecCtx;
  52. AVStream* g_avStream;
  53. AVCodec* g_codec;
  54. AVPacket* g_pkt;
  55. AVFrame* g_yuvFrame;
  56. uint8_t* g_yuvBuf;
  57. AVFrame* g_rgbFrame;
  58. uint8_t* g_brgBuf;
  59. int g_yuvSize;
  60. int g_rgbSize;
  61. struct SwsContext* g_imgCtx;
  62. //参数初始化
  63. //rtsp初始化
  64. g_avStream = NULL;
  65. g_codec = NULL;
  66. g_codecCtx = NULL;
  67. g_fmtCtx = NULL;
  68. g_pkt = NULL;
  69. g_imgCtx = NULL;
  70. g_yuvSize = 0;
  71. g_rgbSize = 0;
  72. int picWidth = 416;
  73. int picHeight = 416;
  74. string rtsp_url = "rtsp://192.168.3.38:8554/stream";
  75. int channelId = 0;
  76. string g_outFile = rtsp_url + to_string(channelId);
  77. //rtsp初始化
  78. avformat_network_init();
  79. if (avformat_alloc_output_context2(&g_fmtCtx, NULL, g_avFormat.c_str(), g_outFile.c_str()) < 0) {
  80. ACLLITE_LOG_ERROR("Cannot alloc output file context");
  81. return ACLLITE_ERROR;
  82. }
  83. av_opt_set(g_fmtCtx->priv_data, "rtsp_transport", "tcp", 0);
  84. av_opt_set(g_fmtCtx->priv_data, "tune", "zerolatency", 0);
  85. av_opt_set(g_fmtCtx->priv_data, "preset", "superfast", 0);
  86. //获取编码器的ID返回一个编码器
  87. g_codec = avcodec_find_encoder(AV_CODEC_ID_H264);
  88. if (g_codec == NULL) {
  89. ACLLITE_LOG_ERROR("Cannot find any endcoder");
  90. return ACLLITE_ERROR;
  91. }
  92. g_codecCtx = avcodec_alloc_context3(g_codec);
  93. if (g_codecCtx == NULL) {
  94. ACLLITE_LOG_ERROR("Cannot alloc context");
  95. return ACLLITE_ERROR;
  96. }
  97. //创建流
  98. g_avStream = avformat_new_stream(g_fmtCtx, g_codec);
  99. if (g_avStream == NULL) {
  100. ACLLITE_LOG_ERROR("failed create new video stream");
  101. return ACLLITE_ERROR;
  102. }
  103. //设置帧率
  104. g_avStream->time_base = AVRational{1, g_frameRate};
  105. //设置编码参数
  106. AVCodecParameters* param = g_fmtCtx->streams[g_avStream->index]->codecpar;
  107. param->codec_type = AVMEDIA_TYPE_VIDEO;
  108. param->width = picWidth;
  109. param->height = picHeight;
  110. avcodec_parameters_to_context(g_codecCtx, param);
  111. //参数绑定设置
  112. g_codecCtx->pix_fmt = AV_PIX_FMT_NV12;
  113. g_codecCtx->time_base = AVRational{1, g_frameRate};
  114. g_codecCtx->bit_rate = g_bitRate;
  115. g_codecCtx->gop_size = g_gopSize;
  116. g_codecCtx->max_b_frames = 0;
  117. if (g_codecCtx->codec_id == AV_CODEC_ID_H264) {
  118. g_codecCtx->qmin = 10;
  119. g_codecCtx->qmax = 51;
  120. g_codecCtx->qcompress = (float)0.6;
  121. }
  122. if (g_codecCtx->codec_id == AV_CODEC_ID_MPEG1VIDEO)
  123. g_codecCtx->mb_decision = 2;
  124. //初始化code
  125. if (avcodec_open2(g_codecCtx, g_codec, NULL) < 0) {
  126. ACLLITE_LOG_ERROR("Open encoder failed");
  127. return ACLLITE_ERROR;
  128. }
  129. //g_codecCtx参数传递给codecpar
  130. avcodec_parameters_from_context(g_avStream->codecpar, g_codecCtx);
  131. //指定输出数据的形式
  132. av_dump_format(g_fmtCtx, 0, g_outFile.c_str(), 1);
  133. //写文件头
  134. int ret1 = avformat_write_header(g_fmtCtx, NULL);
  135. if (ret1 != AVSTREAM_INIT_IN_WRITE_HEADER) {
  136. ACLLITE_LOG_ERROR("Write file header fail");
  137. return ACLLITE_ERROR;
  138. }
  139. g_pkt = av_packet_alloc();
  140. //传输数据初始化
  141. g_rgbFrame = av_frame_alloc();
  142. g_yuvFrame = av_frame_alloc();
  143. g_rgbFrame->width = g_codecCtx->width;
  144. g_yuvFrame->width = g_codecCtx->width;
  145. g_rgbFrame->height = g_codecCtx->height;
  146. g_yuvFrame->height = g_codecCtx->height;
  147. g_rgbFrame->format = AV_PIX_FMT_BGR24;
  148. g_yuvFrame->format = g_codecCtx->pix_fmt;
  149. g_rgbSize = av_image_get_buffer_size(AV_PIX_FMT_BGR24, g_codecCtx->width, g_codecCtx->height, 1);
  150. g_yuvSize = av_image_get_buffer_size(g_codecCtx->pix_fmt, g_codecCtx->width, g_codecCtx->height, 1);
  151. g_brgBuf = (uint8_t*)av_malloc(g_rgbSize);
  152. g_yuvBuf = (uint8_t*)av_malloc(g_yuvSize);
  153. //内存分配
  154. int ret2 = av_image_fill_arrays(g_rgbFrame->data, g_rgbFrame->linesize,
  155. g_brgBuf, AV_PIX_FMT_BGR24,
  156. g_codecCtx->width, g_codecCtx->height, 1);
  157. ret2 = av_image_fill_arrays(g_yuvFrame->data, g_yuvFrame->linesize,
  158. g_yuvBuf, g_codecCtx->pix_fmt,
  159. g_codecCtx->width, g_codecCtx->height, 1);
  160. g_imgCtx = sws_getContext(
  161. g_codecCtx->width, g_codecCtx->height, AV_PIX_FMT_BGR24,
  162. g_codecCtx->width, g_codecCtx->height, g_codecCtx->pix_fmt,
  163. SWS_BILINEAR, NULL, NULL, NULL);
  164. //2.类变量初始化
  165. AclLiteError ret = aclDev.Init();
  166. if (ret) {
  167. ACLLITE_LOG_ERROR("Init resource failed, error %d", ret);
  168. return ACLLITE_ERROR;
  169. }
  170. if (ACLLITE_OK != OpenVideoCapture()) {
  171. return ACLLITE_ERROR;
  172. }
  173. ret = g_dvpp_.Init();
  174. if (ret) {
  175. ACLLITE_LOG_ERROR("Dvpp init failed, error %d", ret);
  176. return ACLLITE_ERROR;
  177. }
  178. cap_ = nullptr;
  179. ret = g_model_.Init();
  180. if (ret) {
  181. ACLLITE_LOG_ERROR("Model init failed, error %d", ret);
  182. return ACLLITE_ERROR;
  183. }
  184. //3.创建模型img_info的输入以及数据拷贝操作
  185. g_runMode_ = g_aclDev_.GetRunMode();
  186. const float imageInfo[4] = {(float)g_modelInputWidth, (float)g_modelInputHeight,
  187. (float)g_modelInputWidth, (float)g_modelInputHeight};
  188. g_imageInfoSize_ = sizeof(imageInfo);
  189. g_imageInfoBuf_ = CopyDataToDevice((void *)imageInfo, g_imageInfoSize_,
  190. g_runMode_, MEMORY_DEVICE);
  191. if (g_imageInfoBuf_ == nullptr) {
  192. ACLLITE_LOG_ERROR("Copy image info to device failed");
  193. return ACLLITE_ERROR;
  194. }
  195. //4.获取视频源
  196. cap_ = new AclLiteVideoProc(streamName_);
  197. //5.视频流解码以及dvpp硬件-resize
  198. int i =0;
  199. while(true)
  200. {
  201. //6.获取解码图片(在device侧的YUV420图片)(存放在ImageDta结构体中)
  202. // struct ImageData {
  203. // acldvppPixelFormat format;
  204. // uint32_t width = 0;
  205. // uint32_t height = 0;
  206. // uint32_t alignWidth = 0;
  207. // uint32_t alignHeight = 0;
  208. // uint32_t size = 0;
  209. // std::shared_ptr<uint8_t> data = nullptr;
  210. // };
  211. i++;
  212. ImageData image;
  213. ret = cap_->Read(image);
  214. ImageData resizedImage;
  215. ret = g_dvpp_.Resize(resizedImage, image, 640, 640);
  216. //7.创建模型输入进行模型推理
  217. ret = g_model_.CreateInput(resizedImage.data.get(), resizedImage.size,
  218. g_imageInfoBuf_, g_imageInfoSize_);
  219. if (ret != ACLLITE_OK) {
  220. ACLLITE_LOG_ERROR("Create mode input dataset failed, error:%d", ret);
  221. return ACLLITE_ERROR;
  222. }
  223. std::vector<InferenceOutput> inferenceOutput;
  224. ret = g_model_.Execute(inferenceOutput);
  225. if (ret != ACLLITE_OK) {
  226. g_model_.DestroyInput();
  227. ACLLITE_LOG_ERROR("Execute model inference failed, error: %d", ret);
  228. return ACLLITE_ERROR;
  229. }
  230. g_model_.DestroyInput();
  231. //8.将YUV图像转换为opencv图像
  232. ImageData yuvImage;
  233. ret = CopyImageToLocal(yuvImage, image, g_runMode_);
  234. if (ret == ACLLITE_ERROR) {
  235. ACLLITE_LOG_ERROR("Copy image to host failed");
  236. return ACLLITE_ERROR;
  237. }
  238. cv::Mat yuvimg(yuvImage.height * 3 / 2, yuvImage.width, CV_8UC1, yuvImage.data.get());
  239. cv::Mat origImage;
  240. cv::cvtColor(yuvimg, origImage, CV_YUV2BGR_NV12);
  241. //模型后处理(根据目标跟踪需要的输入进行获取xywh)
  242. float* detectData = (float *)inferenceOutput[0].data.get();
  243. float* boxNum = (float *)inferenceOutput[1].data.get();
  244. uint32_t totalBox = boxNum[0];
  245. //获取(x,y,w,h)
  246. std::vector<Object> obj;
  247. float widthScale = (float)(origImage.cols) / 640.0;
  248. float heightScale = (float)(origImage.rows) / 640.0;
  249. vector<box> detectResults;
  250. for (uint32_t i = 0; i < totalBox; i++) {
  251. box boundBox;
  252. boundBox.score = float(detectData[totalBox * SCORE + i]);
  253. boundBox.x = detectData[totalBox * TOPLEFTX + i] * widthScale;
  254. boundBox.y = detectData[totalBox * TOPLEFTY + i] * heightScale;
  255. boundBox.w = detectData[totalBox * BOTTOMRIGHTX + i] * widthScale;
  256. boundBox.h = detectData[totalBox * BOTTOMRIGHTY + i] * heightScale;
  257. boundBox.classIndex = (uint32_t)detectData[totalBox * LABEL + i];
  258. detectResults.emplace_back(boundBox);
  259. }
  260. for (size_t i = 0; i < detectResults.size(); i++){
  261. if (res[i].classId != class_id){ continue; }
  262. obj[i].label = detectResults[i].classIndex;
  263. obj[i].rect.x = detectResults[i].x;
  264. obj[i].rect.y = detectResults[i].y;
  265. obj[i].rect.height = detectResults[i].h;
  266. obj[i].rect.width = detectResults[i].w;
  267. obj[i].prob = detectResults[i].score;
  268. }
  269. std::vector<STrack> output_stracks = tracker.update(obj);
  270. for (size_t i = 0; i < output_stracks.size(); i++){
  271. std::vector<float> tlwh = output_stracks[i].tlwh;
  272. cv::Scalar __color = tracker.get_color(output_stracks[i].track_id);
  273. cv::putText(origImage, std::to_string(output_stracks[i].track_id), cv::Point(tlwh[0], tlwh[1] - 10), cv::FONT_ITALIC, 0.75, __color, 2);
  274. cv::rectangle(origImage, cv::Rect(tlwh[0], tlwh[1], tlwh[2], tlwh[3]), __color, 2);
  275. }
  276. //跟踪完成后写推流
  277. memcpy(g_brgBuf, origImage.data, g_rgbSize);
  278. sws_scale(g_imgCtx,
  279. g_rgbFrame->data,
  280. g_rgbFrame->linesize,
  281. 0,
  282. g_codecCtx->height,
  283. g_yuvFrame->data,
  284. g_yuvFrame->linesize);
  285. g_yuvFrame->pts = i;
  286. if (avcodec_send_frame(g_codecCtx, g_yuvFrame) >= 0) {
  287. // cout<<a<<endl;
  288. while (avcodec_receive_packet(g_codecCtx, g_pkt) >= 0) {
  289. cout<<"avcodec_receive_packet"<<endl;
  290. g_pkt->stream_index = g_avStream->index;
  291. av_packet_rescale_ts(g_pkt, g_codecCtx->time_base, g_avStream->time_base);
  292. g_pkt->pos = -1;
  293. int ret = av_interleaved_write_frame(g_fmtCtx, g_pkt);
  294. if (ret < 0) {
  295. ACLLITE_LOG_ERROR("error is: %d", ret);
  296. }
  297. }
  298. }
  299. }
  300. av_packet_free(&g_pkt);
  301. avcodec_close(g_codecCtx);
  302. if (g_fmtCtx) {
  303. avio_close(g_fmtCtx->pb);
  304. avformat_free_context(g_fmtCtx);
  305. }
  306. if (cap_ != nullptr) {
  307. cout << "cap is not open" << endl;
  308. cap_->Close();
  309. delete cap_;
  310. }
  311. dvpp_.DestroyResource();
  312. return 0;
  313. }

跟踪器方面的函数,可以搜索开源代码yolov5-bytetrack-main.cpp截取内部跟踪部分,检测部分使用华为ACL编写的推理代码进行检测;

可以加入学习讨论:1076799627

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/weixin_40725706/article/detail/338983
推荐阅读
相关标签
  

闽ICP备14008679号