当前位置:   article > 正文

知识图谱-KGC(推理补全/链接预测):“知识图谱补全”术语【知识图谱补全、三元组分类、链接预测】_三元组推理模型有哪些

三元组推理模型有哪些

基本简介:

知识图谱补全通常定义为“三元组分类”或“链接预测”任务。首先,一条知识在知识图谱中通常由三元组表示:“头实体,关系,尾实体”。三元组分类即对于给定的三元组,预测其正确的概率。而链接预测则是对于三元组中缺失的某个元素加以补全。由此可见,链接预测可以转换为三元组分类任务,它们都可以对不存在于当前知识图谱中的“新知识”做出预测。

InfoBox:

中文名:知识图谱补全

外文名:Knowledge Graph Completion

简写:KGC

学科:人工智能

实质:利用知识图谱中已有的知识(包括结构和属性等)经过推断得到新的知识。

背景与动机:

近年来,研究者们构建了各种各样的大规模的知识图谱,如Wikidata[1]、YAGO[2]等。虽然它们已经在多个领域取得了显著的成绩,但是在实际应用中,知识覆盖率不足一直是一个令人头疼的问题。那么,如何在已有知识中通过学习得到新的知识,从而对知识图谱进行补全,成为了一种有效手段。并且,在学习的过程中,知识图谱补全检验了模型的推理能力。如图1所示,实线表示已有知识,虚线表示预测的新知识。可以看到,模型从已有知识(贝多芬,职业,钢琴家)和(贝多芬,乐器,钢琴)中归纳出可靠的规则:钢琴家的乐器是钢琴,再通过(Bob,职业,钢琴家)演绎出新知识(Bob&#x

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/weixin_40725706/article/detail/372987
推荐阅读
相关标签
  

闽ICP备14008679号