当前位置:   article > 正文

STM32CubeMX学习笔记(25)——FatFs文件系统使用(操作SPI Flash)_fa_open_always

fa_open_always

一、FatFs简介

FatFs 是面向小型嵌入式系统的一种通用的 FAT 文件系统。它完全是由 ANSI C 语言编写并且完全独立于底层的 I/O 介质。因此它可以很容易地不加修改地移植到其他的处理器当中,如 8051、PIC、AVR、SH、Z80、H8、ARM 等。FatFs 支持 FAT12、FAT16、FAT32 等格式,所以我们利用前面写好的 SPI Flash 芯片驱动,把 FatFs 文件系统代码移植到工程之中,就可以利用文件系统的各种函数,对 SPI Flash 芯片以“文件”格式进行读写操作了。

FatFs 文件系统的源码可以从 fatfs 官网下载:
http://elm-chan.org/fsw/ff/00index_e.html

1.1 FatFs文件系统布局

簇是文件存储的最小单元,FAT32分区大小与对应簇空间大小关系如下表示:

分区空间大小簇空间大小每个簇包含的扇区数
< 8GB4KB8
[ 8GB, 16GB )8KB16
[ 16GB, 32GB )16KB32

= 32GB | 32KB | 64

例如:创建一个50字节的test.txt文件,文件大小是50字节,但是占用磁盘空间为4096字节(一个簇)

1.2 FatFs层次结构

  • 最顶层是应用层:使用者只需要调用FATFS模块提供给用户的一系列应用接口函数(如f_open, f_read, f_write和f_close等),就可以像在PC上读写文件那样简单

  • 中间层FATFS模块:实现了FAT文件读写协议;它提供了ff.c和ff.h文件,一般情况下不用修改,使用时将头文件包含进去即可

  • 最底层是FATFS模块的底层接口:包括存储媒介读写接口和供给文件创建修改时间的实时时钟,需要在移植时编写对应的代码

FATFS源码相关文件介绍如下表示;移植FATFS模块时,一般只需要修改2个文件(即ffconf.hdiskio.c

与平台无关:

文件说明
ffconf.hFATFS模块配置文件
ff.hFATFS和应用模块公用的包含文件
ff.cFATFS模块
diskio.hFATFS和disk I/O模块公用的包含文件
interger.h数据类型定义
option可选的外部功能(比如支持中文)

与平台相关:

文件说明
diskio.cFATFS和disk I/O模块接口层文件

1.3 FatFs API

1.3.1 f_mount

功能在FatFs模块上注册、注销一个工作区(文件系统对象)
函数定义FRESULT f_mount(FATFS* fs, const TCHAR* path, BYTE opt)
参数fs:工作区(文件系统对象)指针
path:注册/注销工作区的逻辑驱动器号
opt:注册或注销选项
返回操作结果

1.3.2 f_open

功能创建/打开一个文件对象
函数定义FRESULT f_open(FIL* fp, const TCHAR* path, BYTE mode)
参数fp:将被创建的文件对象结构的指针
path:文件名指针,指定将创建或打开的文件名
mode:访问类型和打开方法,由一下标准的一个组合指定的
返回操作结果
模式描述
FA_READ指定读访问对象。可以从文件中读取数据。 与FA_WRITE 结 合可以进行读写访问。
FA_WRITE指定写访问对象。可以向文件中写入数据。与FA_READ 结合 可以进行读写访问。
FA_OPEN_EXISTING打开文件。如果文件不存在,则打开失败。(默认)
FA_OPEN_ALWAYS如果文件存在,则打开;否则,创建一个新文件。
FA_CREATE_NEW创建一个新文件。如果文件已存在,则创建失败。
FA_CREATE_ALWAYS创建一个新文件。如果文件已存在,则它将被截断并覆盖。

1.3.3 f_close

功能关闭一个打开的文件
函数定义FRESULT f_close(FIL* fp)
参数fp:指向将被关闭的已打开的文件对象结构的指针
返回操作结果

1.3.4 f_read

功能从一个打开的文件中读取数据
函数定义FRESULT f_read(FIL* fp, void* buff, UINT btr, UINT* br)
参数fp:指向将被读取的已打开的文件对象结构的指针
buff:指向存储读取数据的缓冲区的指针
btr:要读取的字节数
br:指向返回已读取字节数的UINT变量的指针,返回为实际读取的字节数
返回操作结果

1.3.5 f_write

功能写入数据到一个已打开的文件
函数定义FRESULT f_write(FIL* fp, void* buff, UINT btw, UINT* bw)
参数fp:指向将被写入的已打开的文件对象结构的指针
buff:指向存储写入数据的缓冲区的指针
btw:要写入的字节数
bw:指向返回已写入字节数的UINT变量的指针,返回为实际写入的字节数
返回操作结果

另外FatFs还有很多API操作函数,在这里不再作详细的介绍,详细信息请查看FatFs文件系统官网。

二、新建工程

1. 打开 STM32CubeMX 软件,点击“新建工程”

2. 选择 MCU 和封装

3. 配置时钟
RCC 设置,选择 HSE(外部高速时钟) 为 Crystal/Ceramic Resonator(晶振/陶瓷谐振器)

选择 Clock Configuration,配置系统时钟 SYSCLK 为 72MHz
修改 HCLK 的值为 72 后,输入回车,软件会自动修改所有配置

4. 配置调试模式
非常重要的一步,否则会造成第一次烧录程序后续无法识别调试器
SYS 设置,选择 Debug 为 Serial Wire

三、SPI1

3.1 参数配置

Connectivity 中选择 SPI1 设置,并选择 Full-Duplex Master 全双工主模式,不开启 NSS 即不使用硬件片选信号

原理图中虽然将 CS 片选接到了硬件 SPI1 的 NSS 引脚,因为硬件 NSS 使用比较麻烦,所以后面直接把 PA4 配置为普通 GPIO,手动控制片选信号。

在右边图中找到 SPI1 NSS 对应引脚,选择 GPIO_Output纠正:野火STM32F103指南者开发板SPI1 NSS须配置为PC0

修改输出高电平 High,标签为 W25Q64_CHIP_SELECT

SPI 为默认设置不作修改。只需注意一下,Prescaler 分频系数最低为 4,波特率 (Baud Rate) 为 18.0 MBits/s。这里被限制了,SPI1 最高通信速率可达 36Mbtis/s。

  • Clock Polarity(CPOL):SPI 通讯设备处于空闲状态时,SCK 信号线的电平信号(即 SPI 通讯开始前、 NSS 线为高电平时 SCK 的状态)。CPOL=0 时, SCK 在空闲状态时为低电平,CPOL=1 时,则相反。
  • Clock Phase(CPHA):指数据的采样的时刻,当 CPHA=0 时,MOSI 或 MISO 数据线上的信号将会在 SCK 时钟线的“奇数边沿”被采样。当 CPHA=1 时,数据线在 SCK 的“偶数边沿”采样。

    根据 FLASH 芯片的说明,它支持 SPI 模式0模式 3,支持双线全双工,使用 MSB 先行模式,数据帧长度为 8 位。

    所以这里配置 CPOL 为 Low,CPHA 为 1 Edge 即 SPI 模式0

四、FATFS

4.1 参数配置

Middleware 中选择 FATFS 设置,并勾选 User-defined 因为 SPI Flash 在上面没有

  • Function Parameters 跳过

  • Locale and Namespace Parameters:

    • CODE_PAGE(Code page on target): Simplified Chinese GBK(DBCS,OEM,Windows) 支持简体中文编码
    • USE_LFN(Use Long Filename): Enabled with dynamic working buffer on the STACK 支持长文件名,并指定使用栈空间为缓冲区

缓存工作区为什么放在栈?其实fatfs提供了三个选项:BSS,STACK , HEAP,根据个人情况选一个。
在BSS上启用带有静态工作缓冲区的LFN,不能动态分配。
如果选择了HEAP(堆)且自己有属于自己的malloc就去重写ff_memalloc ff_memfree函数。如果是库的malloc就不需要。
一般都选择使用STACK(栈),能动态分配。
当使用堆栈作为工作缓冲区时,请注意堆栈溢出。

  • Physical Drive Parameters:
    • VOLUMES(Logical drivers): 2 指定物理设备数量,这里设置为 2,包括预留 SD 卡和 SPI Flash 芯片
    • MAX_SS(Maximum Sector Size): 4096 指定扇区大小的最大值。SD 卡扇区大小一般都为 512 字节,SPI Flash 芯片扇区大小一般设置为 4096 字节,所以需要把 _MAX_SS 改为 4096
    • MIN_SS(Minimum Sector Size): 512 指定扇区大小的最小值

4.2 增大栈空间

将最小栈空间改到 0x1000

注意:由于刚才设置长文件名动态缓存存储在堆中,故需要增大栈大小,如果不修改则程序运行时栈会生成溢出,程序进入硬件错误中断(HardFault),死循环。

4.3 生成代码

输入项目名和项目路径

选择应用的 IDE 开发环境 MDK-ARM V5

每个外设生成独立的 ’.c/.h’ 文件
不勾:所有初始化代码都生成在 main.c
勾选:初始化代码生成在对应的外设文件。 如 GPIO 初始化代码生成在 gpio.c 中。

点击 GENERATE CODE 生成代码

五、添加SPI Flash操作函数

user_diskio.c 中加入

//#define SPI_FLASH_PageSize            4096
#define SPI_FLASH_PageSize              256
#define SPI_FLASH_PerWritePageSize      256

#define ManufactDeviceID_CMD    0x90
#define READ_STATU_REGISTER_1   0x05
#define READ_STATU_REGISTER_2   0x35
#define READ_DATA_CMD           0x03
#define WRITE_ENABLE_CMD        0x06
#define WRITE_DISABLE_CMD       0x04
#define SECTOR_ERASE_CMD        0x20
#define CHIP_ERASE_CMD          0xc7
#define PAGE_PROGRAM_CMD        0x02
                  
#define SPI_FLASH_CS_LOW()      HAL_GPIO_WritePin(W25Q64_CHIP_SELECT_GPIO_Port, W25Q64_CHIP_SELECT_Pin, GPIO_PIN_RESET);
#define SPI_FLASH_CS_HIGH()     HAL_GPIO_WritePin(W25Q64_CHIP_SELECT_GPIO_Port, W25Q64_CHIP_SELECT_Pin, GPIO_PIN_SET);

extern SPI_HandleTypeDef hspi1; 

/**
 * @brief    SPI发送指定长度的数据
 * @param    buf  —— 发送数据缓冲区首地址
 * @param    size —— 要发送数据的字节数
 * @retval   成功返回HAL_OK
 */
static HAL_StatusTypeDef SPI_Transmit(uint8_t* send_buf, uint16_t size)
{
    return HAL_SPI_Transmit(&hspi1, send_buf, size, 100);
}
/**
 * @brief   SPI接收指定长度的数据
 * @param   buf  —— 接收数据缓冲区首地址
 * @param   size —— 要接收数据的字节数
 * @retval  成功返回HAL_OK
 */
static HAL_StatusTypeDef SPI_Receive(uint8_t* recv_buf, uint16_t size)
{
   return HAL_SPI_Receive(&hspi1, recv_buf, size, 100);
}
/**
 * @brief   SPI在发送数据的同时接收指定长度的数据
 * @param   send_buf  —— 接收数据缓冲区首地址
 * @param   recv_buf  —— 接收数据缓冲区首地址
 * @param   size —— 要发送/接收数据的字节数
 * @retval  成功返回HAL_OK
 */
static HAL_StatusTypeDef SPI_TransmitReceive(uint8_t* send_buf, uint8_t* recv_buf, uint16_t size)
{
   return HAL_SPI_TransmitReceive(&hspi1, send_buf, recv_buf, size, 100);
}

/*等待超时时间*/
#define SPIT_FLAG_TIMEOUT         ((uint32_t)0x1000)
#define SPIT_LONG_TIMEOUT         ((uint32_t)(10 * SPIT_FLAG_TIMEOUT))
static __IO uint32_t  SPITimeout = SPIT_LONG_TIMEOUT;   
/**
  * @brief  等待超时回调函数
  * @param  None.
  * @retval None.
  */
static  uint16_t SPI_TIMEOUT_UserCallback(uint8_t errorCode)
{
  /* 等待超时后的处理,输出错误信息 */
  printf("SPI 等待超时!errorCode = %d",errorCode);
  return 0;
}
 /**
  * @brief  使用SPI发送一个字节的数据
  * @param  byte:要发送的数据
  * @retval 返回接收到的数据
  */
uint8_t SPI_FLASH_SendByte(uint8_t byte)
{
  SPITimeout = SPIT_FLAG_TIMEOUT;

  /* 等待发送缓冲区为空,TXE事件 */
  while (__HAL_SPI_GET_FLAG( &hspi1, SPI_FLAG_TXE ) == RESET)
   {
    if((SPITimeout--) == 0) return SPI_TIMEOUT_UserCallback(0);
   }

  /* 写入数据寄存器,把要写入的数据写入发送缓冲区 */
  WRITE_REG(hspi1.Instance->DR, byte);

  SPITimeout = SPIT_FLAG_TIMEOUT;

  /* 等待接收缓冲区非空,RXNE事件 */
  while (__HAL_SPI_GET_FLAG( &hspi1, SPI_FLAG_RXNE ) == RESET)
   {
    if((SPITimeout--) == 0) return SPI_TIMEOUT_UserCallback(1);
   }

  /* 读取数据寄存器,获取接收缓冲区数据 */
  return READ_REG(hspi1.Instance->DR);
}

/**
 * @brief   读取Flash内部的ID
 * @param   none
 * @retval  成功返回device_id
 */
uint16_t W25QXX_ReadID(void)
{
    uint8_t recv_buf[2] = {0};    //recv_buf[0]存放Manufacture ID, recv_buf[1]存放Device ID
    uint16_t device_id = 0;
    uint8_t send_data[4] = {ManufactDeviceID_CMD,0x00,0x00,0x00};   //待发送数据,命令+地址
    
    /* 使能片选 */
    SPI_FLASH_CS_LOW();
    
    /* 发送并读取数据 */
    if (HAL_OK == SPI_Transmit(send_data, 4)) 
    {
        if (HAL_OK == SPI_Receive(recv_buf, 2)) 
        {
            device_id = (recv_buf[0] << 8) | recv_buf[1];
        }
    }
    
    /* 取消片选 */
    SPI_FLASH_CS_HIGH();
    
    return device_id;
}
/**
 * @brief     读取W25QXX的状态寄存器,W25Q64一共有2个状态寄存器
 * @param     reg  —— 状态寄存器编号(1~2)
 * @retval    状态寄存器的值
 */
static uint8_t W25QXX_ReadSR(uint8_t reg)
{
    uint8_t result = 0; 
    uint8_t send_buf[4] = {0x00,0x00,0x00,0x00};
    switch(reg)
    {
        case 1:
            send_buf[0] = READ_STATU_REGISTER_1;
        case 2:
            send_buf[0] = READ_STATU_REGISTER_2;
        case 0:
        default:
            send_buf[0] = READ_STATU_REGISTER_1;
    }
    
    /* 使能片选 */
    SPI_FLASH_CS_LOW();
    
    if (HAL_OK == SPI_Transmit(send_buf, 4)) 
    {
        if (HAL_OK == SPI_Receive(&result, 1)) 
        {
            /* 取消片选 */
            SPI_FLASH_CS_HIGH();
            
            return result;
        }
    }
    
    /* 取消片选 */
    SPI_FLASH_CS_HIGH();

    return 0;
}
/**
 * @brief   阻塞等待Flash处于空闲状态
 * @param   none
 * @retval  none
 */
static void W25QXX_Wait_Busy(void)
{
    while((W25QXX_ReadSR(1) & 0x01) == 0x01); // 等待BUSY位清空
}
/**
 * @brief    W25QXX写使能,将S1寄存器的WEL置位
 * @param    none
 * @retval
 */
void W25QXX_Write_Enable(void)
{
    uint8_t cmd= WRITE_ENABLE_CMD;
    
    SPI_FLASH_CS_LOW();
    
    SPI_Transmit(&cmd, 1);
    
    SPI_FLASH_CS_HIGH();
    
    W25QXX_Wait_Busy();

}
/**
 * @brief    W25QXX写禁止,将WEL清零
 * @param    none
 * @retval    none
 */
void W25QXX_Write_Disable(void)
{
    uint8_t cmd = WRITE_DISABLE_CMD;

    SPI_FLASH_CS_LOW();
    
    SPI_Transmit(&cmd, 1);
    
    SPI_FLASH_CS_HIGH();
    
    W25QXX_Wait_Busy();
}
/**
 * @brief    W25QXX擦除一个扇区
 * @param   sector_addr    —— 扇区地址 根据实际容量设置
 * @retval  none
 * @note    阻塞操作
 */
void W25QXX_Erase_Sector(uint32_t sector_addr)
{   
    W25QXX_Write_Enable();  //擦除操作即写入0xFF,需要开启写使能
    W25QXX_Wait_Busy();     //等待写使能完成
   
    /* 使能片选 */
    SPI_FLASH_CS_LOW();
    
    /* 发送扇区擦除指令*/
    SPI_FLASH_SendByte(SECTOR_ERASE_CMD);
    /*发送擦除扇区地址的高位*/
    SPI_FLASH_SendByte((sector_addr & 0xFF0000) >> 16);
    /* 发送擦除扇区地址的中位 */
    SPI_FLASH_SendByte((sector_addr & 0xFF00) >> 8);
    /* 发送擦除扇区地址的低位 */
    SPI_FLASH_SendByte(sector_addr & 0xFF);
    
    /* 取消片选 */
    SPI_FLASH_CS_HIGH();
    
    W25QXX_Wait_Busy();       //等待扇区擦除完成
}
/**
 * @brief    页写入操作
 * @param    dat —— 要写入的数据缓冲区首地址
 * @param    WriteAddr —— 要写入的地址
 * @param   byte_to_write —— 要写入的字节数(0-256)
 * @retval    none
 */
void W25QXX_PageProgram(uint8_t* dat, uint32_t WriteAddr, uint16_t nbytes)
{
    uint8_t cmd = PAGE_PROGRAM_CMD;
    
//    WriteAddr <<= 8;
    
    W25QXX_Write_Enable();
    
    /* 使能片选 */
    SPI_FLASH_CS_LOW();
    
    SPI_Transmit(&cmd, 1);

//    SPI_Transmit((uint8_t*)&WriteAddr, 3);
    uint8_t addr;
    HAL_StatusTypeDef status;
    /* 发送 读 地址高位 */
    addr = (WriteAddr & 0xFF0000) >> 16;
    status = SPI_Transmit(&addr, 1);
    /* 发送 读 地址中位 */
    addr = (WriteAddr & 0xFF00) >> 8;
    status = SPI_Transmit(&addr, 1);
    /* 发送 读 地址低位 */
    addr = WriteAddr & 0xFF;
    status = SPI_Transmit(&addr, 1);
    
    SPI_Transmit(dat, nbytes);
    
    /* 取消片选 */
    SPI_FLASH_CS_HIGH();
    
    W25QXX_Wait_Busy();
}
/**
 * @brief  对FLASH写入数据,调用本函数写入数据前需要先擦除扇区
 * @param   pBuffer,要写入数据的指针
 * @param  WriteAddr,写入地址
 * @param  NumByteToWrite,写入数据长度
 * @retval 无
 */
void W25QXX_BufferWrite(uint8_t* pBuffer, uint32_t WriteAddr, uint16_t NumByteToWrite)
{
    uint8_t NumOfPage = 0;
    uint8_t NumOfSingle = 0;
    uint8_t Addr = 0;
    uint8_t count = 0;
    uint8_t temp = 0;
    
    /*mod运算求余,若writeAddr是SPI_FLASH_PageSize整数倍,运算结果Addr值为0*/
    Addr = WriteAddr % SPI_FLASH_PageSize;
    
    /*差count个数据值,刚好可以对齐到页地址*/
    count = SPI_FLASH_PageSize - Addr;  
    /*计算出要写多少整数页*/
    NumOfPage =  NumByteToWrite / SPI_FLASH_PageSize;
    /*mod运算求余,计算出剩余不满一页的字节数*/
    NumOfSingle = NumByteToWrite % SPI_FLASH_PageSize;

    /* Addr=0,则WriteAddr 刚好按页对齐 aligned  */
    if(Addr == 0) 
    {
        /* NumByteToWrite < SPI_FLASH_PageSize */
        if(NumOfPage == 0) 
        {
            W25QXX_PageProgram(pBuffer, WriteAddr, NumByteToWrite);
        }
        /* NumByteToWrite > SPI_FLASH_PageSize */
        else
        {
            /*先把整数页都写了*/
            while(NumOfPage--)
            {
                W25QXX_PageProgram(pBuffer, WriteAddr, SPI_FLASH_PageSize);
                WriteAddr +=  SPI_FLASH_PageSize;
                pBuffer += SPI_FLASH_PageSize;
            }
            
            /*若有多余的不满一页的数据,把它写完*/
            W25QXX_PageProgram(pBuffer, WriteAddr, NumOfSingle);
        }
    }
    /* 若地址与 SPI_FLASH_PageSize 不对齐  */
    else 
    {
        /* NumByteToWrite < SPI_FLASH_PageSize */
        if(NumOfPage == 0) 
        {
            /*当前页剩余的count个位置比NumOfSingle小,写不完*/
            if(NumOfSingle > count) 
            {
                temp = NumOfSingle - count;
                
                /*先写满当前页*/
                W25QXX_PageProgram(pBuffer, WriteAddr, count);
                WriteAddr += count;
                pBuffer += count;
                
                /*再写剩余的数据*/
                W25QXX_PageProgram(pBuffer, WriteAddr, temp);
            }
            /*当前页剩余的count个位置能写完NumOfSingle个数据*/
            else
            {               
                W25QXX_PageProgram(pBuffer, WriteAddr, NumByteToWrite);
            }
        }
        /* NumByteToWrite > SPI_FLASH_PageSize */
        else
        {
            /*地址不对齐多出的count分开处理,不加入这个运算*/
            NumByteToWrite -= count;
            NumOfPage =  NumByteToWrite / SPI_FLASH_PageSize;
            NumOfSingle = NumByteToWrite % SPI_FLASH_PageSize;

            W25QXX_PageProgram(pBuffer, WriteAddr, count);
            WriteAddr +=  count;
            pBuffer += count;
            
            /*把整数页都写了*/
            while(NumOfPage--)
            {
                W25QXX_PageProgram(pBuffer, WriteAddr, SPI_FLASH_PageSize);
                WriteAddr +=  SPI_FLASH_PageSize;
                pBuffer += SPI_FLASH_PageSize;
            }
            /*若有多余的不满一页的数据,把它写完*/
            if(NumOfSingle != 0)
            {
                W25QXX_PageProgram(pBuffer, WriteAddr, NumOfSingle);
            }
        }
    }
}
 /**
  * @brief  读取FLASH数据
  * @param  pBuffer,存储读出数据的指针
  * @param   ReadAddr,读取地址
  * @param   NumByteToRead,读取数据长度
  * @retval 无
  */
void W25QXX_BufferRead(uint8_t* pBuffer, uint32_t ReadAddr, uint16_t NumByteToRead)
{  
    W25QXX_Wait_Busy();
    
    /* 选择FLASH: CS低电平 */
    SPI_FLASH_CS_LOW();

    /* 发送 读 指令 */
    uint8_t cmd = READ_DATA_CMD;
    SPI_Transmit(&cmd, 1);

// 不知道为什么连起来发不行
//    ReadAddr = ReadAddr << 8;
//    SPI_Transmit((uint8_t*)&ReadAddr, 3);
    
    uint8_t addr;
    HAL_StatusTypeDef status;
    /* 发送 读 地址高位 */
    addr = (ReadAddr & 0xFF0000) >> 16;
    status = SPI_Transmit(&addr, 1);
    /* 发送 读 地址中位 */
    addr = (ReadAddr& 0xFF00) >> 8;
    status = SPI_Transmit(&addr, 1);
    /* 发送 读 地址低位 */
    addr = ReadAddr & 0xFF;
    status = SPI_Transmit(&addr, 1);
    
    if(HAL_OK == status)
    {
        SPI_Receive(pBuffer, NumByteToRead);
    }

    /* 停止信号 FLASH: CS 高电平 */
    SPI_FLASH_CS_HIGH();
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228
  • 229
  • 230
  • 231
  • 232
  • 233
  • 234
  • 235
  • 236
  • 237
  • 238
  • 239
  • 240
  • 241
  • 242
  • 243
  • 244
  • 245
  • 246
  • 247
  • 248
  • 249
  • 250
  • 251
  • 252
  • 253
  • 254
  • 255
  • 256
  • 257
  • 258
  • 259
  • 260
  • 261
  • 262
  • 263
  • 264
  • 265
  • 266
  • 267
  • 268
  • 269
  • 270
  • 271
  • 272
  • 273
  • 274
  • 275
  • 276
  • 277
  • 278
  • 279
  • 280
  • 281
  • 282
  • 283
  • 284
  • 285
  • 286
  • 287
  • 288
  • 289
  • 290
  • 291
  • 292
  • 293
  • 294
  • 295
  • 296
  • 297
  • 298
  • 299
  • 300
  • 301
  • 302
  • 303
  • 304
  • 305
  • 306
  • 307
  • 308
  • 309
  • 310
  • 311
  • 312
  • 313
  • 314
  • 315
  • 316
  • 317
  • 318
  • 319
  • 320
  • 321
  • 322
  • 323
  • 324
  • 325
  • 326
  • 327
  • 328
  • 329
  • 330
  • 331
  • 332
  • 333
  • 334
  • 335
  • 336
  • 337
  • 338
  • 339
  • 340
  • 341
  • 342
  • 343
  • 344
  • 345
  • 346
  • 347
  • 348
  • 349
  • 350
  • 351
  • 352
  • 353
  • 354
  • 355
  • 356
  • 357
  • 358
  • 359
  • 360
  • 361
  • 362
  • 363
  • 364
  • 365
  • 366
  • 367
  • 368
  • 369
  • 370
  • 371
  • 372
  • 373
  • 374
  • 375
  • 376
  • 377
  • 378
  • 379
  • 380
  • 381
  • 382
  • 383
  • 384
  • 385
  • 386
  • 387
  • 388
  • 389
  • 390
  • 391
  • 392
  • 393
  • 394
  • 395
  • 396
  • 397
  • 398
  • 399
  • 400
  • 401
  • 402
  • 403
  • 404
  • 405
  • 406
  • 407
  • 408
  • 409
  • 410
  • 411
  • 412
  • 413
  • 414
  • 415
  • 416
  • 417

六、修改diskio接口函数

user_diskio.c 中修改以下几个函数:

/* Private functions ---------------------------------------------------------*/

/**
  * @brief  Initializes a Drive
  * @param  pdrv: Physical drive number (0..)
  * @retval DSTATUS: Operation status
  */
DSTATUS USER_initialize (
	BYTE pdrv           /* Physical drive nmuber to identify the drive */
)
{
  /* USER CODE BEGIN INIT */
    /* 延时一小段时间 */
    uint16_t i;
    i = 500;
    while(--i);
    Stat = STA_NOINIT;
	if(W25QXX_ReadID() != 0)
    {
        Stat &= ~STA_NOINIT;
    }		
    return Stat;
  /* USER CODE END INIT */
}

/**
  * @brief  Gets Disk Status
  * @param  pdrv: Physical drive number (0..)
  * @retval DSTATUS: Operation status
  */
DSTATUS USER_status (
	BYTE pdrv       /* Physical drive number to identify the drive */
)
{
  /* USER CODE BEGIN STATUS */
    Stat &= ~STA_NOINIT;
    return Stat;
  /* USER CODE END STATUS */
}

/**
  * @brief  Reads Sector(s)
  * @param  pdrv: Physical drive number (0..)
  * @param  *buff: Data buffer to store read data
  * @param  sector: Sector address (LBA)
  * @param  count: Number of sectors to read (1..128)
  * @retval DRESULT: Operation result
  */
DRESULT USER_read (
	BYTE pdrv,      /* Physical drive nmuber to identify the drive */
	BYTE *buff,     /* Data buffer to store read data */
	DWORD sector,   /* Sector address in LBA */
	UINT count      /* Number of sectors to read */
)
{
  /* USER CODE BEGIN READ */
	DRESULT status = RES_PARERR;
    if(!count)
    {
        return RES_PARERR; //count不能等于0,否则返回参数错误
    }
   // /* 扇区偏移2MB,外部Flash文件系统空间放在SPI Flash后面6MB空间 */
   // sector += 512;      
    W25QXX_BufferRead(buff, sector << 12, count << 12);
    status = RES_OK;
	return status;
  /* USER CODE END READ */
}

/**
  * @brief  Writes Sector(s)
  * @param  pdrv: Physical drive number (0..)
  * @param  *buff: Data to be written
  * @param  sector: Sector address (LBA)
  * @param  count: Number of sectors to write (1..128)
  * @retval DRESULT: Operation result
  */
#if _USE_WRITE == 1
DRESULT USER_write (
	BYTE pdrv,          /* Physical drive nmuber to identify the drive */
	const BYTE *buff,   /* Data to be written */
	DWORD sector,       /* Sector address in LBA */
	UINT count          /* Number of sectors to write */
)
{
  /* USER CODE BEGIN WRITE */
    uint32_t write_addr; 
	DRESULT status = RES_PARERR;
	if(!count) 
    {
		return RES_PARERR;		/* Check parameter */
	}
    ///* 扇区偏移2MB,外部Flash文件系统空间放在SPI Flash后面6MB空间 */
    //sector += 512;
    write_addr = sector << 12;    
    W25QXX_Erase_Sector(write_addr);
    W25QXX_BufferWrite((uint8_t *)buff, write_addr, count << 12);
    status = RES_OK;
	return status;
  /* USER CODE END WRITE */
}
#endif /* _USE_WRITE == 1 */

/**
  * @brief  I/O control operation
  * @param  pdrv: Physical drive number (0..)
  * @param  cmd: Control code
  * @param  *buff: Buffer to send/receive control data
  * @retval DRESULT: Operation result
  */
#if _USE_IOCTL == 1
DRESULT USER_ioctl (
	BYTE pdrv,      /* Physical drive nmuber (0..) */
	BYTE cmd,       /* Control code */
	void *buff      /* Buffer to send/receive control data */
)
{
  /* USER CODE BEGIN IOCTL */
	DRESULT status = RES_OK;
    switch(cmd) 
    {
        case CTRL_SYNC :
            break;
        /* 扇区数量:1536*4096/1024/1024=6(MB) */
        case GET_SECTOR_COUNT:
          *(DWORD * )buff = 1536;		
            break;
        /* 扇区大小  */
        case GET_SECTOR_SIZE :
          *(WORD * )buff = 4096;
            break;
        /* 同时擦除扇区个数 */
        case GET_BLOCK_SIZE :
          *(DWORD * )buff = 1;
            break;        
        case CTRL_TRIM:
            break;
		default:
			status = RES_PARERR;
            break;      
	}
	return status;
  /* USER CODE END IOCTL */
}
#endif /* _USE_IOCTL == 1 */
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145

七、修改main函数

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
UINT fnum;                          /* 文件成功读写数量 */
BYTE ReadBuffer[1024] = {0};        /* 读缓冲区 */
BYTE WriteBuffer[]= "Hello World!\n";

/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_DMA_Init();
  MX_USART1_UART_Init();
  MX_SPI1_Init();
  MX_FATFS_Init();
  /* USER CODE BEGIN 2 */
  printf("****** 这是一个SPI FLASH 文件系统实验 ******\r\n");
  
  // 在外部SPI Flash挂载文件系统,文件系统挂载时会对SPI设备初始化
  retUSER = f_mount(&USERFatFS, USERPath, 1);
	
  /*----------------------- 格式化测试 -----------------*/  
  /* 如果没有文件系统就格式化创建创建文件系统 */
  if(retUSER == FR_NO_FILESYSTEM)
  {
    printf("》FLASH还没有文件系统,即将进行格式化...\r\n");
    /* 格式化 */
    retUSER = f_mkfs(USERPath, 0, 0);	    
		
    if(retUSER == FR_OK)
    {
      printf("》FLASH已成功格式化文件系统。\r\n");
      /* 格式化后,先取消挂载 */
      retUSER = f_mount(NULL, USERPath, 1);			
      /* 重新挂载	*/			
      retUSER = f_mount(&USERFatFS, USERPath, 1);
    }
    else
    {
      printf("《《格式化失败。》》\r\n");
      while(1);
    }
  }
  else if(retUSER != FR_OK)
  {
    printf("!!外部Flash挂载文件系统失败。(%d)\r\n", retUSER);
    printf("!!可能原因:SPI Flash初始化不成功。\r\n");
    while(1);
  }
  else
  {
    printf("》文件系统挂载成功,可以进行读写测试\r\n");
  }
  
  /*----------------------- 文件系统测试:写测试 -------------------*/
  /* 打开文件,每次都以新建的形式打开,属性为可写 */
  printf("\r\n****** 即将进行文件写入测试... ******\r\n");	
  retUSER = f_open(&USERFile, "test.txt", FA_CREATE_ALWAYS | FA_WRITE);
  if(retUSER == FR_OK)
  {
    printf("》打开/创建FatFs读写测试文件.txt文件成功,向文件写入数据。\r\n");
    /* 将指定存储区内容写入到文件内 */
    retUSER = f_write(&USERFile, WriteBuffer, sizeof(WriteBuffer), &fnum);
    if(retUSER == FR_OK)
    {
      printf("》文件写入成功,写入字节数据:%d\n", fnum);
      printf("》向文件写入的数据为:\r\n%s\r\n", WriteBuffer);
    }
    else
    {
      printf("!!文件写入失败:(%d)\n", retUSER);
    }    
    /* 不再读写,关闭文件 */
    f_close(&USERFile);
  }
  else
  {	
    printf("!!打开/创建文件失败。\r\n");
  }
	
/*------------------- 文件系统测试:读测试 --------------------------*/
	printf("****** 即将进行文件读取测试... ******\r\n");
	retUSER = f_open(&USERFile, "test.txt",FA_OPEN_EXISTING | FA_READ); 	 
	if(retUSER == FR_OK)
	{
		printf("》打开文件成功。\r\n");
		retUSER = f_read(&USERFile, ReadBuffer, sizeof(ReadBuffer), &fnum); 
    if(retUSER==FR_OK)
    {
      printf("》文件读取成功,读到字节数据:%d\r\n",fnum);
      printf("》读取得的文件数据为:\r\n%s \r\n", ReadBuffer);	
    }
    else
    {
      printf("!!文件读取失败:(%d)\n",retUSER);
    }		
	}
	else
	{
		printf("!!打开文件失败。\r\n");
	}
	/* 不再读写,关闭文件 */
	f_close(&USERFile);	
  
	/* 不再使用文件系统,取消挂载文件系统 */
	f_mount(NULL,"1:",1);
  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143

八、查看打印

串口打印功能查看 STM32CubeMX学习笔记(6)——USART串口使用

九、工程代码

链接:https://pan.baidu.com/s/1WAfBj091e7IJVLwaL1HyHA 提取码:w24p

十、注意事项

用户代码要加在 USER CODE BEGIN NUSER CODE END N 之间,否则下次使用 STM32CubeMX 重新生成代码后,会被删除。


• 由 Leung 写于 2021 年 4 月 2 日

• 参考:【STM32CubeMx你不知道的那些事】第九章:STM32CubeMx的SPI外置FLASH+文件系统(FATFS)
    STM32CubeMX系列|FATFS文件系统
    使用STM32CUBEMX生成FatFS代码,操作SPI FLASH
    STM32CUBEIDE之SPI读写FLASH进阶串行FLASH文件系统FatFs
    3.1、CUBEMX使用FATFS读写SPI_FLASH

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/weixin_40725706/article/detail/464018?site
推荐阅读
相关标签
  

闽ICP备14008679号