赞
踩
一共搜集了65篇2D目标检测论文,涉及:通用目标检测、旋转目标检测、Few-shot/自监督/半监督/无监督目标检测等方向。
作者:Amusi | 来源:CVer
CVer 正式盘点CVPR 2021上各个方向的工作,本篇是热度依然很高的2D目标检测论文大盘点,之前已分享:
最新!CVPR 2021 视觉Transformer论文大盘点(43篇)
最新!CVPR 2021 OCR领域论文大盘点(22篇)
关于更多CVPR 2021的论文和开源代码,可见下面链接:
Amusi 一共搜集了65篇2D目标检测论文,涉及:通用目标检测、旋转目标检测、Few-shot/自监督/半监督/无监督目标检测等方向。
注意:
1. Scaled-YOLOv4: Scaling Cross Stage Partial Network
2. You Only Look One-level Feature
3. Sparse R-CNN: End-to-End Object Detection with Learnable Proposals
4. End-to-End Object Detection with Fully Convolutional Network
5. Dynamic Head: Unifying Object Detection Heads with Attentions
6. Generalized Focal Loss V2: Learning Reliable Localization Quality Estimation for Dense Object Detection
7. UP-DETR: Unsupervised Pre-training for Object Detection with Transformers
8. MobileDets: Searching for Object Detection Architectures for Mobile Accelerators
作者单位: 威斯康星大学, 谷歌
Paper: https://openaccess.thecvf.com/content/CVPR2021/papers/Xiong_MobileDets_Searching_for_Object_Detection_Architectures_for_Mobile_Accelerators_CVPR_2021_paper.pdf
Code: https://github.com/tensorflow/models/tree/master/research/object_detection
9. Tracking Pedestrian Heads in Dense Crowd
10. Joint-DetNAS: Upgrade Your Detector with NAS, Pruning and Dynamic Distillation
11. PSRR-MaxpoolNMS: Pyramid Shifted MaxpoolNMS with Relationship Recovery
12. IQDet: Instance-wise Quality Distribution Sampling for Object Detection
13. Multi-Scale Aligned Distillation for Low-Resolution Detection
14. Adaptive Class Suppression Loss for Long-Tail Object Detection
作者单位: 中科院, 国科大, ObjectEye, 北京大学, 鹏城实验室, Nexwise
Paper: https://arxiv.org/abs/2104.00885
Code: https://github.com/CASIA-IVA-Lab/ACSL
15. VarifocalNet: An IoU-aware Dense Object Detector
16. OTA: Optimal Transport Assignment for Object Detection
作者单位: 早稻田大学, 旷视科技
Paper: https://arxiv.org/abs/2103.14259
Code: https://github.com/Megvii-BaseDetection/OTA
17. Distilling Object Detectors via Decoupled Features
18. Robust and Accurate Object Detection via Adversarial Learning
作者单位: 谷歌, UCLA, UCSC
Paper: https://arxiv.org/abs/2103.13886
Code: None
19. OPANAS: One-Shot Path Aggregation Network Architecture Search for Object Detection
20. Multiple Instance Active Learning for Object Detection
21. Towards Open World Object Detection
22. RankDetNet: Delving Into Ranking Constraints for Object Detection
23. Dense Label Encoding for Boundary Discontinuity Free Rotation Detection
24. ReDet: A Rotation-equivariant Detector for Aerial Object Detection
作者单位: 武汉大学
Paper: https://arxiv.org/abs/2103.07733
Code: https://github.com/csuhan/ReDet
25. Beyond Bounding-Box: Convex-Hull Feature Adaptation for Oriented and Densely Packed Object Detection
26. Accurate Few-Shot Object Detection With Support-Query Mutual Guidance and Hybrid Loss
作者单位: 复旦大学, 同济大学, 浙江大学
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Zhang_Accurate_Few-Shot_Object_Detection_With_Support-Query_Mutual_Guidance_and_Hybrid_CVPR_2021_paper.html
Code: None
27. Adaptive Image Transformer for One-Shot Object Detection
28. Dense Relation Distillation with Context-aware Aggregation for Few-Shot Object Detection
29. Semantic Relation Reasoning for Shot-Stable Few-Shot Object Detection
作者单位: 卡内基梅隆大学(CMU)
Paper: https://arxiv.org/abs/2103.01903
Code: None
30. FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding
31. Hallucination Improves Few-Shot Object Detection
32. Few-Shot Object Detection via Classification Refinement and Distractor Retreatment
33. Generalized Few-Shot Object Detection Without Forgetting
34. Transformation Invariant Few-Shot Object Detection
作者单位: 华为诺亚方舟实验室
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Li_Transformation_Invariant_Few-Shot_Object_Detection_CVPR_2021_paper.html
Code: None
35. UniT: Unified Knowledge Transfer for Any-Shot Object Detection and Segmentation
36. Beyond Max-Margin: Class Margin Equilibrium for Few-Shot Object Detection
37. Points As Queries: Weakly Semi-Supervised Object Detection by Points]
38. Data-Uncertainty Guided Multi-Phase Learning for Semi-Supervised Object Detection
39. Positive-Unlabeled Data Purification in the Wild for Object Detection
作者单位: 华为诺亚方舟实验室, 悉尼大学, 北京大学
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Guo_Positive-Unlabeled_Data_Purification_in_the_Wild_for_Object_Detection_CVPR_2021_paper.html
Code: None
40. Interactive Self-Training With Mean Teachers for Semi-Supervised Object Detection
41. Instant-Teaching: An End-to-End Semi-Supervised Object Detection Framework
42. Humble Teachers Teach Better Students for Semi-Supervised Object Detection
43. Interpolation-Based Semi-Supervised Learning for Object Detection
44. Domain-Specific Suppression for Adaptive Object Detection
45. MeGA-CDA: Memory Guided Attention for Category-Aware Unsupervised Domain Adaptive Object Detection
46. Unbiased Mean Teacher for Cross-Domain Object Detection
47. I^3Net: Implicit Instance-Invariant Network for Adapting One-Stage Object Detectors
48. There Is More Than Meets the Eye: Self-Supervised Multi-Object Detection and Tracking With Sound by Distilling Multimodal Knowledge
49. Instance Localization for Self-supervised Detection Pretraining
50. Informative and Consistent Correspondence Mining for Cross-Domain Weakly Supervised Object Detection
51. DAP: Detection-Aware Pre-training with Weak Supervision
52. Open-Vocabulary Object Detection Using Captions
作者单位:Snap, 哥伦比亚大学
Paper(Oral): https://openaccess.thecvf.com/content/CVPR2021/html/Zareian_Open-Vocabulary_Object_Detection_Using_Captions_CVPR_2021_paper.html
Code: https://github.com/alirezazareian/ovr-cnn
53. Depth From Camera Motion and Object Detection
作者单位: 密歇根大学, SIAI
Paper: https://arxiv.org/abs/2103.01468
Code: https://github.com/griffbr/ODMD
Dataset: https://github.com/griffbr/ODMD
54. Unsupervised Object Detection With LIDAR Clues
55. GAIA: A Transfer Learning System of Object Detection That Fits Your Needs
56. General Instance Distillation for Object Detection
57. AQD: Towards Accurate Quantized Object Detection
58. Scale-Aware Automatic Augmentation for Object Detection
59. Equalization Loss v2: A New Gradient Balance Approach for Long-Tailed Object Detection
60. Class-Aware Robust Adversarial Training for Object Detection
61. Improved Handling of Motion Blur in Online Object Detection
62. Multiple Instance Active Learning for Object Detection
63. Neural Auto-Exposure for High-Dynamic Range Object Detection
64. Generalizable Pedestrian Detection: The Elephant in the Room
65. Neural Auto-Exposure for High-Dynamic Range Object Detection
建了CVer-目标检测交流群!想要进目标检测学习交流群的同学,可以直接加微信号:CVer9999。加的时候备注一下:目标检测+学校/公司+昵称,即可。然后就可以拉你进群了。
强烈推荐大家关注CVer知乎账号和CVer微信公众号,可以快速了解到最新优质的CV论文。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。