当前位置:   article > 正文

C# Onnx Yolov8 Seg 分割_yolo c# 用onnxruntime

yolo c# 用onnxruntime

目录

效果

模型信息

项目

代码

下载 


效果

模型信息

Model Properties
-------------------------
date:2023-09-07T17:11:46.798385
description:Ultralytics YOLOv8n-seg model trained on coco.yaml
author:Ultralytics
task:segment
license:AGPL-3.0 https://ultralytics.com/license
version:8.0.172
stride:32
batch:1
imgsz:[640, 640]
names:{0: 'person', 1: 'bicycle', 2: 'car', 3: 'motorcycle', 4: 'airplane', 5: 'bus', 6: 'train', 7: 'truck', 8: 'boat', 9: 'traffic light', 10: 'fire hydrant', 11: 'stop sign', 12: 'parking meter', 13: 'bench', 14: 'bird', 15: 'cat', 16: 'dog', 17: 'horse', 18: 'sheep', 19: 'cow', 20: 'elephant', 21: 'bear', 22: 'zebra', 23: 'giraffe', 24: 'backpack', 25: 'umbrella', 26: 'handbag', 27: 'tie', 28: 'suitcase', 29: 'frisbee', 30: 'skis', 31: 'snowboard', 32: 'sports ball', 33: 'kite', 34: 'baseball bat', 35: 'baseball glove', 36: 'skateboard', 37: 'surfboard', 38: 'tennis racket', 39: 'bottle', 40: 'wine glass', 41: 'cup', 42: 'fork', 43: 'knife', 44: 'spoon', 45: 'bowl', 46: 'banana', 47: 'apple', 48: 'sandwich', 49: 'orange', 50: 'broccoli', 51: 'carrot', 52: 'hot dog', 53: 'pizza', 54: 'donut', 55: 'cake', 56: 'chair', 57: 'couch', 58: 'potted plant', 59: 'bed', 60: 'dining table', 61: 'toilet', 62: 'tv', 63: 'laptop', 64: 'mouse', 65: 'remote', 66: 'keyboard', 67: 'cell phone', 68: 'microwave', 69: 'oven', 70: 'toaster', 71: 'sink', 72: 'refrigerator', 73: 'book', 74: 'clock', 75: 'vase', 76: 'scissors', 77: 'teddy bear', 78: 'hair drier', 79: 'toothbrush'}
---------------------------------------------------------------

Inputs
-------------------------
name:images
tensor:Float[1, 3, 640, 640]
---------------------------------------------------------------

Outputs
-------------------------
name:output0
tensor:Float[1, 116, 8400]
name:output1
tensor:Float[1, 32, 160, 160]
---------------------------------------------------------------

项目

代码

// 图片缩放
image = new Mat(image_path);
int max_image_length = image.Cols > image.Rows ? image.Cols : image.Rows;
Mat max_image = Mat.Zeros(new OpenCvSharp.Size(max_image_length, max_image_length), MatType.CV_8UC3);
Rect roi = new Rect(0, 0, image.Cols, image.Rows);
image.CopyTo(new Mat(max_image, roi));

float[] det_result_array = new float[8400 * 116];
float[] proto_result_array = new float[32 * 160 * 160];
float[] factors = new float[4];
factors[0] = factors[1] = (float)(max_image_length / 640.0);
factors[2] = image.Rows;
factors[3] = image.Cols;

// 将图片转为RGB通道
Mat image_rgb = new Mat();
Cv2.CvtColor(max_image, image_rgb, ColorConversionCodes.BGR2RGB);
Mat resize_image = new Mat();
Cv2.Resize(image_rgb, resize_image, new OpenCvSharp.Size(640, 640));

// 输入Tensor
// input_tensor = new DenseTensor<float>(new[] { 1, 3, 640, 640 });
for (int y = 0; y < resize_image.Height; y++)
{
    for (int x = 0; x < resize_image.Width; x++)
    {
        input_tensor[0, 0, y, x] = resize_image.At<Vec3b>(y, x)[0] / 255f;
        input_tensor[0, 1, y, x] = resize_image.At<Vec3b>(y, x)[1] / 255f;
        input_tensor[0, 2, y, x] = resize_image.At<Vec3b>(y, x)[2] / 255f;
    }
}

//将 input_tensor 放入一个输入参数的容器,并指定名称
input_ontainer.Add(NamedOnnxValue.CreateFromTensor("images", input_tensor));

dt1 = DateTime.Now;
//运行 Inference 并获取结果
result_infer = onnx_session.Run(input_ontainer);
dt2 = DateTime.Now;

  1. using Microsoft.ML.OnnxRuntime;
  2. using Microsoft.ML.OnnxRuntime.Tensors;
  3. using OpenCvSharp;
  4. using System;
  5. using System.Collections.Generic;
  6. using System.ComponentModel;
  7. using System.Data;
  8. using System.Drawing;
  9. using System.Linq;
  10. using System.Text;
  11. using System.Windows.Forms;
  12. using static System.Net.Mime.MediaTypeNames;
  13. namespace Onnx_Yolov8_Demo
  14. {
  15. public partial class Form1 : Form
  16. {
  17. public Form1()
  18. {
  19. InitializeComponent();
  20. }
  21. string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
  22. string image_path = "";
  23. string startupPath;
  24. string classer_path;
  25. DateTime dt1 = DateTime.Now;
  26. DateTime dt2 = DateTime.Now;
  27. string model_path;
  28. Mat image;
  29. SegmentationResult result_pro;
  30. Mat result_image;
  31. SessionOptions options;
  32. InferenceSession onnx_session;
  33. Tensor<float> input_tensor;
  34. List<NamedOnnxValue> input_ontainer;
  35. IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;
  36. DisposableNamedOnnxValue[] results_onnxvalue;
  37. Tensor<float> result_tensors_det;
  38. Tensor<float> result_tensors_proto;
  39. private void button1_Click(object sender, EventArgs e)
  40. {
  41. OpenFileDialog ofd = new OpenFileDialog();
  42. ofd.Filter = fileFilter;
  43. if (ofd.ShowDialog() != DialogResult.OK) return;
  44. pictureBox1.Image = null;
  45. image_path = ofd.FileName;
  46. pictureBox1.Image = new Bitmap(image_path);
  47. textBox1.Text = "";
  48. image = new Mat(image_path);
  49. pictureBox2.Image = null;
  50. }
  51. private void button2_Click(object sender, EventArgs e)
  52. {
  53. if (image_path == "")
  54. {
  55. return;
  56. }
  57. // 配置图片数据
  58. image = new Mat(image_path);
  59. int max_image_length = image.Cols > image.Rows ? image.Cols : image.Rows;
  60. Mat max_image = Mat.Zeros(new OpenCvSharp.Size(max_image_length, max_image_length), MatType.CV_8UC3);
  61. Rect roi = new Rect(0, 0, image.Cols, image.Rows);
  62. image.CopyTo(new Mat(max_image, roi));
  63. float[] det_result_array = new float[8400 * 116];
  64. float[] proto_result_array = new float[32 * 160 * 160];
  65. float[] factors = new float[4];
  66. factors[0] = factors[1] = (float)(max_image_length / 640.0);
  67. factors[2] = image.Rows;
  68. factors[3] = image.Cols;
  69. // 将图片转为RGB通道
  70. Mat image_rgb = new Mat();
  71. Cv2.CvtColor(max_image, image_rgb, ColorConversionCodes.BGR2RGB);
  72. Mat resize_image = new Mat();
  73. Cv2.Resize(image_rgb, resize_image, new OpenCvSharp.Size(640, 640));
  74. // 输入Tensor
  75. // input_tensor = new DenseTensor<float>(new[] { 1, 3, 640, 640 });
  76. for (int y = 0; y < resize_image.Height; y++)
  77. {
  78. for (int x = 0; x < resize_image.Width; x++)
  79. {
  80. input_tensor[0, 0, y, x] = resize_image.At<Vec3b>(y, x)[0] / 255f;
  81. input_tensor[0, 1, y, x] = resize_image.At<Vec3b>(y, x)[1] / 255f;
  82. input_tensor[0, 2, y, x] = resize_image.At<Vec3b>(y, x)[2] / 255f;
  83. }
  84. }
  85. //input_tensor 放入一个输入参数的容器,并指定名称
  86. input_ontainer.Add(NamedOnnxValue.CreateFromTensor("images", input_tensor));
  87. dt1 = DateTime.Now;
  88. //运行 Inference 并获取结果
  89. result_infer = onnx_session.Run(input_ontainer);
  90. dt2 = DateTime.Now;
  91. // 将输出结果转为DisposableNamedOnnxValue数组
  92. results_onnxvalue = result_infer.ToArray();
  93. // 读取第一个节点输出并转为Tensor数据
  94. result_tensors_det = results_onnxvalue[0].AsTensor<float>();
  95. result_tensors_proto = results_onnxvalue[1].AsTensor<float>();
  96. det_result_array = result_tensors_det.ToArray();
  97. proto_result_array = result_tensors_proto.ToArray();
  98. resize_image.Dispose();
  99. image_rgb.Dispose();
  100. result_pro = new SegmentationResult(classer_path, factors);
  101. result_image = result_pro.draw_result(result_pro.process_result(det_result_array, proto_result_array), image.Clone());
  102. if (!result_image.Empty())
  103. {
  104. pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());
  105. textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";
  106. }
  107. else
  108. {
  109. textBox1.Text = "无信息";
  110. }
  111. }
  112. private void Form1_Load(object sender, EventArgs e)
  113. {
  114. startupPath = System.Windows.Forms.Application.StartupPath;
  115. model_path = startupPath + "\\yolov8n-seg.onnx";
  116. classer_path = startupPath + "\\yolov8-detect-lable.txt";
  117. // 创建输出会话,用于输出模型读取信息
  118. options = new SessionOptions();
  119. options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
  120. // 设置为CPU上运行
  121. options.AppendExecutionProvider_CPU(0);
  122. // 创建推理模型类,读取本地模型文件
  123. onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径
  124. // 输入Tensor
  125. input_tensor = new DenseTensor<float>(new[] { 1, 3, 640, 640 });
  126. // 创建输入容器
  127. input_ontainer = new List<NamedOnnxValue>();
  128. }
  129. }
  130. }

下载 

完整Demo下载

exe程序下载

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/weixin_40725706/article/detail/669009
推荐阅读
相关标签
  

闽ICP备14008679号