当前位置:   article > 正文

深度优先搜索(DFS、深搜)和广度优先搜索(BFS、广搜)

深搜

目录

深度优先搜索(DFS、深搜)和广度优先搜索(BFS、广搜)

深度优先搜索(简称“深搜”或DFS)

广度优先搜索

总结

深度优先生成树和广度优先生成树

非连通图的生成森林

深度优先生成森林

广度优先生成森林


深度优先搜索(DFS、深搜)和广度优先搜索(BFS、广搜)

深度优先搜索(简称“深搜”或DFS)

无向图


图 1 无向图


深度优先搜索的过程类似于树的先序遍历,首先从例子中体会深度优先搜索。例如图 1 是一个无向图,采用深度优先算法遍历这个图的过程为:

  1. 首先任意找一个未被遍历过的顶点,例如从 V1 开始,由于 V1 率先访问过了,所以,需要标记 V1 的状态为访问过;
  2. 然后遍历 V1 的邻接点,例如访问 V2 ,并做标记,然后访问 V2 的邻接点,例如 V4 (做标记),然后 V8 ,然后 V5 ;
  3. 当继续遍历 V5 的邻接点时,根据之前做的标记显示,所有邻接点都被访问过了。此时,从 V5 回退到 V8 ,看 V8 是否有未被访问过的邻接点,如果没有,继续回退到 V4 , V2 , V1 ;
  4. 通过查看 V1 ,找到一个未被访问过的顶点 V3 ,继续遍历,然后访问 V3  邻接点 V6 ,然后 V7 ;
  5. 由于 V7 没有未被访问的邻接点,所有回退到 V6 ,继续回退至 V3 ,最后到达 V1 ,发现没有未被访问的;
  6. 最后一步需要判断是否所有顶点都被访问,如果还有没被访问的,以未被访问的顶点为第一个顶点,继续依照上边的方式进行遍历。


根据上边的过程,可以得到图 1 通过深度优先搜索获得的顶点的遍历次序为:

V1 -> V2 -> V4 -> V8 -> V5 -> V3 -> V6 -> V7


所谓深度优先搜索,是从图中的一个顶点出发,每次遍历当前访问顶点的临界点,一直到访问的顶点没有未被访问过的临界点为止。然后采用依次回退的方式,查看来的路上每一个顶点是否有其它未被访问的临界点。访问完成后,判断图中的顶点是否已经全部遍历完成,如果没有,以未访问的顶点为起始点,重复上述过程。

深度优先搜索是一个不断回溯的过程。


采用深度优先搜索算法遍历图的实现代码为:

 
  1. #include <stdio.h>
  2. #define MAX_VERtEX_NUM 20 //顶点的最大个数
  3. #define VRType int //表示顶点之间的关系的变量类型
  4. #define InfoType char //存储弧或者边额外信息的指针变量类型
  5. #define VertexType int //图中顶点的数据类型
  6. typedef enum{false,true}bool; //定义bool型常量
  7. bool visited[MAX_VERtEX_NUM]; //设置全局数组,记录标记顶点是否被访问过
  8. typedef struct {
  9. VRType adj; //对于无权图,用 1 或 0 表示是否相邻;对于带权图,直接为权值。
  10. InfoType * info; //弧或边额外含有的信息指针
  11. }ArcCell,AdjMatrix[MAX_VERtEX_NUM][MAX_VERtEX_NUM];
  12. typedef struct {
  13. VertexType vexs[MAX_VERtEX_NUM]; //存储图中顶点数据
  14. AdjMatrix arcs; //二维数组,记录顶点之间的关系
  15. int vexnum,arcnum; //记录图的顶点数和弧(边)数
  16. }MGraph;
  17. //根据顶点本身数据,判断出顶点在二维数组中的位置
  18. int LocateVex(MGraph * G,VertexType v){
  19. int i=0;
  20. //遍历一维数组,找到变量v
  21. for (; i<G->vexnum; i++) {
  22. if (G->vexs[i]==v) {
  23. break;
  24. }
  25. }
  26. //如果找不到,输出提示语句,返回-1
  27. if (i>G->vexnum) {
  28. printf("no such vertex.\n");
  29. return -1;
  30. }
  31. return i;
  32. }
  33. //构造无向图
  34. void CreateDN(MGraph *G){
  35. scanf("%d,%d",&(G->vexnum),&(G->arcnum));
  36. for (int i=0; i<G->vexnum; i++) {
  37. scanf("%d",&(G->vexs[i]));
  38. }
  39. for (int i=0; i<G->vexnum; i++) {
  40. for (int j=0; j<G->vexnum; j++) {
  41. G->arcs[i][j].adj=0;
  42. G->arcs[i][j].info=NULL;
  43. }
  44. }
  45. for (int i=0; i<G->arcnum; i++) {
  46. int v1,v2;
  47. scanf("%d,%d",&v1,&v2);
  48. int n=LocateVex(G, v1);
  49. int m=LocateVex(G, v2);
  50. if (m==-1 ||n==-1) {
  51. printf("no this vertex\n");
  52. return;
  53. }
  54. G->arcs[n][m].adj=1;
  55. G->arcs[m][n].adj=1;//无向图的二阶矩阵沿主对角线对称
  56. }
  57. }
  58. int FirstAdjVex(MGraph G,int v)
  59. {
  60. //查找与数组下标为v的顶点之间有边的顶点,返回它在数组中的下标
  61. for(int i = 0; i<G.vexnum; i++){
  62. if( G.arcs[v][i].adj ){
  63. return i;
  64. }
  65. }
  66. return -1;
  67. }
  68. int NextAdjVex(MGraph G,int v,int w)
  69. {
  70. //从前一个访问位置w的下一个位置开始,查找之间有边的顶点
  71. for(int i = w+1; i<G.vexnum; i++){
  72. if(G.arcs[v][i].adj){
  73. return i;
  74. }
  75. }
  76. return -1;
  77. }
  78. void visitVex(MGraph G, int v){
  79. printf("%d ",G.vexs[v]);
  80. }
  81. void DFS(MGraph G,int v){
  82. visited[v] = true;//标记为true
  83. visitVex( G, v); //访问第v 个顶点
  84. //从该顶点的第一个边开始,一直到最后一个边,对处于边另一端的顶点调用DFS函数
  85. for(int w = FirstAdjVex(G,v); w>=0; w = NextAdjVex(G,v,w)){
  86. //如果该顶点的标记位false,证明未被访问,调用深度优先搜索函数
  87. if(!visited[w]){
  88. DFS(G,w);
  89. }
  90. }
  91. }
  92. //深度优先搜索
  93. void DFSTraverse(MGraph G){//
  94. int v;
  95. //将用做标记的visit数组初始化为false
  96. for( v = 0; v < G.vexnum; ++v){
  97. visited[v] = false;
  98. }
  99. //对于每个标记为false的顶点调用深度优先搜索函数
  100. for( v = 0; v < G.vexnum; v++){
  101. //如果该顶点的标记位为false,则调用深度优先搜索函数
  102. if(!visited[v]){
  103. DFS( G, v);
  104. }
  105. }
  106. }
  107. int main() {
  108. MGraph G;//建立一个图的变量
  109. CreateDN(&G);//初始化图
  110. DFSTraverse(G);//深度优先搜索图
  111. return 0;
  112. }

以图 1 为例,运行结果为:

8,9
1
2
3
4
5
6
7
8
1,2
2,4
2,5
4,8
5,8
1,3
3,6
6,7
7,3
1 2 4 8 5 3 6 7

广度优先搜索

广度优先搜索类似于树的层次遍历。从图中的某一顶点出发,遍历每一个顶点时,依次遍历其所有的邻接点,然后再从这些邻接点出发,同样依次访问它们的邻接点。按照此过程,直到图中所有被访问过的顶点的邻接点都被访问到。

最后还需要做的操作就是查看图中是否存在尚未被访问的顶点,若有,则以该顶点为起始点,重复上述遍历的过程。

还拿图 1 中的无向图为例,假设 V1 作为起始点,遍历其所有的邻接点 V2 和 V3 ,以 V2 为起始点,访问邻接点 V4 和 V5 ,以 V3 为起始点,访问邻接点 V6 、 V7 ,以 V4 为起始点访问 V8 ,以 V5 为起始点,由于 V5 所有的起始点已经全部被访问,所有直接略过, V6 和 V7 也是如此。
以 V1 为起始点的遍历过程结束后,判断图中是否还有未被访问的点,由于图 1 中没有了,所以整个图遍历结束。遍历顶点的顺序为:

V1 -> V2 -> v3 -> V4 -> V5 -> V6 -> V7 -> V8


广度优先搜索的实现需要借助队列这一特殊数据结构,实现代码为:

 
  1. #include <stdio.h>
  2. #include <stdlib.h>
  3. #define MAX_VERtEX_NUM 20 //顶点的最大个数
  4. #define VRType int //表示顶点之间的关系的变量类型
  5. #define InfoType char //存储弧或者边额外信息的指针变量类型
  6. #define VertexType int //图中顶点的数据类型
  7. typedef enum{false,true}bool; //定义bool型常量
  8. bool visited[MAX_VERtEX_NUM]; //设置全局数组,记录标记顶点是否被访问过
  9. typedef struct Queue{
  10. VertexType data;
  11. struct Queue * next;
  12. }Queue;
  13. typedef struct {
  14. VRType adj; //对于无权图,用 1 或 0 表示是否相邻;对于带权图,直接为权值。
  15. InfoType * info; //弧或边额外含有的信息指针
  16. }ArcCell,AdjMatrix[MAX_VERtEX_NUM][MAX_VERtEX_NUM];
  17. typedef struct {
  18. VertexType vexs[MAX_VERtEX_NUM]; //存储图中顶点数据
  19. AdjMatrix arcs; //二维数组,记录顶点之间的关系
  20. int vexnum,arcnum; //记录图的顶点数和弧(边)数
  21. }MGraph;
  22. //根据顶点本身数据,判断出顶点在二维数组中的位置
  23. int LocateVex(MGraph * G,VertexType v){
  24. int i=0;
  25. //遍历一维数组,找到变量v
  26. for (; i<G->vexnum; i++) {
  27. if (G->vexs[i]==v) {
  28. break;
  29. }
  30. }
  31. //如果找不到,输出提示语句,返回-1
  32. if (i>G->vexnum) {
  33. printf("no such vertex.\n");
  34. return -1;
  35. }
  36. return i;
  37. }
  38. //构造无向图
  39. void CreateDN(MGraph *G){
  40. scanf("%d,%d",&(G->vexnum),&(G->arcnum));
  41. for (int i=0; i<G->vexnum; i++) {
  42. scanf("%d",&(G->vexs[i]));
  43. }
  44. for (int i=0; i<G->vexnum; i++) {
  45. for (int j=0; j<G->vexnum; j++) {
  46. G->arcs[i][j].adj=0;
  47. G->arcs[i][j].info=NULL;
  48. }
  49. }
  50. for (int i=0; i<G->arcnum; i++) {
  51. int v1,v2;
  52. scanf("%d,%d",&v1,&v2);
  53. int n=LocateVex(G, v1);
  54. int m=LocateVex(G, v2);
  55. if (m==-1 ||n==-1) {
  56. printf("no this vertex\n");
  57. return;
  58. }
  59. G->arcs[n][m].adj=1;
  60. G->arcs[m][n].adj=1;//无向图的二阶矩阵沿主对角线对称
  61. }
  62. }
  63. int FirstAdjVex(MGraph G,int v)
  64. {
  65. //查找与数组下标为v的顶点之间有边的顶点,返回它在数组中的下标
  66. for(int i = 0; i<G.vexnum; i++){
  67. if( G.arcs[v][i].adj ){
  68. return i;
  69. }
  70. }
  71. return -1;
  72. }
  73. int NextAdjVex(MGraph G,int v,int w)
  74. {
  75. //从前一个访问位置w的下一个位置开始,查找之间有边的顶点
  76. for(int i = w+1; i<G.vexnum; i++){
  77. if(G.arcs[v][i].adj){
  78. return i;
  79. }
  80. }
  81. return -1;
  82. }
  83. //操作顶点的函数
  84. void visitVex(MGraph G, int v){
  85. printf("%d ",G.vexs[v]);
  86. }
  87. //初始化队列
  88. void InitQueue(Queue ** Q){
  89. (*Q)=(Queue*)malloc(sizeof(Queue));
  90. (*Q)->next=NULL;
  91. }
  92. //顶点元素v进队列
  93. void EnQueue(Queue **Q,VertexType v){
  94. Queue * element=(Queue*)malloc(sizeof(Queue));
  95. element->data=v;
  96. element->next = NULL;
  97. Queue * temp=(*Q);
  98. while (temp->next!=NULL) {
  99. temp=temp->next;
  100. }
  101. temp->next=element;
  102. }
  103. //队头元素出队列
  104. void DeQueue(Queue **Q,int *u){
  105. (*u)=(*Q)->next->data;
  106. (*Q)->next=(*Q)->next->next;
  107. }
  108. //判断队列是否为空
  109. bool QueueEmpty(Queue *Q){
  110. if (Q->next==NULL) {
  111. return true;
  112. }
  113. return false;
  114. }
  115. //广度优先搜索
  116. void BFSTraverse(MGraph G){//
  117. int v;
  118. //将用做标记的visit数组初始化为false
  119. for( v = 0; v < G.vexnum; ++v){
  120. visited[v] = false;
  121. }
  122. //对于每个标记为false的顶点调用深度优先搜索函数
  123. Queue * Q;
  124. InitQueue(&Q);
  125. for( v = 0; v < G.vexnum; v++){
  126. if(!visited[v]){
  127. visited[v]=true;
  128. visitVex(G, v);
  129. EnQueue(&Q, G.vexs[v]);
  130. while (!QueueEmpty(Q)) {
  131. int u;
  132. DeQueue(&Q, &u);
  133. u=LocateVex(&G, u);
  134. for (int w=FirstAdjVex(G, u); w>=0; w=NextAdjVex(G, u, w)) {
  135. if (!visited[w]) {
  136. visited[w]=true;
  137. visitVex(G, w);
  138. EnQueue(&Q, G.vexs[w]);
  139. }
  140. }
  141. }
  142. }
  143. }
  144. }
  145. int main() {
  146. MGraph G;//建立一个图的变量
  147. CreateDN(&G);//初始化图
  148. BFSTraverse(G);//广度优先搜索图
  149. return 0;
  150. }


例如,使用上述程序代码遍历图 1 中的无向图,运行结果为:

8,9
1
2
3
4
5
6
7
8
1,2
2,4
2,5
4,8
5,8
1,3
3,6
6,7
7,3
1 2 3 4 5 6 7 8

总结

本节介绍了两种遍历图的方式:深度优先搜索算法和广度优先搜索算法。深度优先搜索算法的实现运用的主要是回溯法,类似于树的先序遍历算法。广度优先搜索算法借助队列的先进先出的特点,类似于树的层次遍历。

 

深度优先生成树和广度优先生成树

其实在对无向图进行遍历的时候,遍历过程中所经历过的图中的顶点和边的组合,就是图的生成树或者生成森林。


 


图 1 无向图
 12485367

例如,图 1 中的无向图是由 V1~V7 的顶点和编号分别为 a~i 的边组成。当使用深度优先搜索算法时,假设 V1 作为遍历的起始点,涉及到的顶点和边的遍历顺序为(不唯一):


此种遍历顺序构建的生成树为:


 


 12485367
图 2 深度优先生成树


由深度优先搜索得到的树为深度优先生成树。同理广度优先搜索生成的树为广度优先生成树,图 1 无向图以顶点 V1 为起始点进行广度优先搜索遍历得到的树,如图 3 所示:


 


图 3 广度优先生成树

连通图的生成森林

非连通图在进行遍历时,实则是对非连通图中每个连通分量分别进行遍历,在遍历过程经过的每个顶点和边,就构成了每个连通分量的生成树。

非连通图中,多个连通分量构成的多个生成树为非连通图的生成森林。

深度优先生成森林

选择小的数字作为开头;


图 4 深度优先生成森林


例如,对图 4 中的非连通图 (a) 采用深度优先搜索算法遍历时,得到的深度优先生成森林(由 3 个深度优先生成树构成)如 (b) 所示(不唯一)。

非连通图在遍历生成森林时,可以采用孩子兄弟表示法将森林转化为一整棵二叉树进行存储。


具体实现的代码:

  1. #include <stdio.h>
  2. #include <stdlib.h>
  3. #define MAX_VERtEX_NUM 20 //顶点的最大个数
  4. #define VRType int //表示顶点之间的关系的变量类型
  5. #define VertexType int //图中顶点的数据类型
  6. typedef enum{false,true}bool; //定义bool型常量
  7. bool visited[MAX_VERtEX_NUM]; //设置全局数组,记录标记顶点是否被访问过
  8. typedef struct {
  9. VRType adj; //对于无权图,用 1 或 0 表示是否相邻;对于带权图,直接为权值。
  10. }ArcCell,AdjMatrix[MAX_VERtEX_NUM][MAX_VERtEX_NUM];
  11. typedef struct {
  12. VertexType vexs[MAX_VERtEX_NUM]; //存储图中顶点数据
  13. AdjMatrix arcs; //二维数组,记录顶点之间的关系
  14. int vexnum,arcnum; //记录图的顶点数和弧(边)数
  15. }MGraph;
  16. //孩子兄弟表示法的链表结点结构
  17. typedef struct CSNode{
  18. VertexType data;
  19. struct CSNode * lchild;//孩子结点
  20. struct CSNode * nextsibling;//兄弟结点
  21. }*CSTree,CSNode;
  22. //根据顶点本身数据,判断出顶点在二维数组中的位置
  23. int LocateVex(MGraph G,VertexType v){
  24. int i=0;
  25. //遍历一维数组,找到变量v
  26. for (; i<G.vexnum; i++) {
  27. if (G.vexs[i]==v) {
  28. break;
  29. }
  30. }
  31. //如果找不到,输出提示语句,返回-1
  32. if (i>G.vexnum) {
  33. printf("no such vertex.\n");
  34. return -1;
  35. }
  36. return i;
  37. }
  38. //构造无向图
  39. void CreateDN(MGraph *G){
  40. scanf("%d,%d",&(G->vexnum),&(G->arcnum));
  41. getchar();
  42. for (int i=0; i<G->vexnum; i++) {
  43. scanf("%d",&(G->vexs[i]));
  44. }
  45. for (int i=0; i<G->vexnum; i++) {
  46. for (int j=0; j<G->vexnum; j++) {
  47. G->arcs[i][j].adj=0;
  48. }
  49. }
  50. for (int i=0; i<G->arcnum; i++) {
  51. int v1,v2;
  52. scanf("%d,%d",&v1,&v2);
  53. int n=LocateVex(*G, v1);
  54. int m=LocateVex(*G, v2);
  55. if (m==-1 ||n==-1) {
  56. printf("no this vertex\n");
  57. return;
  58. }
  59. G->arcs[n][m].adj=1;
  60. G->arcs[m][n].adj=1;//无向图的二阶矩阵沿主对角线对称
  61. }
  62. }
  63. int FirstAdjVex(MGraph G,int v)
  64. {
  65. //查找与数组下标为v的顶点之间有边的顶点,返回它在数组中的下标
  66. for(int i = 0; i<G.vexnum; i++){
  67. if( G.arcs[v][i].adj ){
  68. return i;
  69. }
  70. }
  71. return -1;
  72. }
  73. int NextAdjVex(MGraph G,int v,int w)
  74. {
  75. //从前一个访问位置w的下一个位置开始,查找之间有边的顶点
  76. for(int i = w+1; i<G.vexnum; i++){
  77. if(G.arcs[v][i].adj){
  78. return i;
  79. }
  80. }
  81. return -1;
  82. }
  83. void DFSTree(MGraph G,int v,CSTree*T){
  84. //将正在访问的该顶点的标志位设为true
  85. visited[v]=true;
  86. bool first=true;
  87. CSTree q=NULL;
  88. //依次遍历该顶点的所有邻接点
  89. for (int w=FirstAdjVex(G, v); w>=0; w=NextAdjVex(G, v, w)) {
  90. //如果该临界点标志位为false,说明还未访问
  91. if (!visited[w]) {
  92. //为该邻接点初始化为结点
  93. CSTree p=(CSTree)malloc(sizeof(CSNode));
  94. p->data=G.vexs[w];
  95. p->lchild=NULL;
  96. p->nextsibling=NULL;
  97. //该结点的第一个邻接点作为孩子结点,其它邻接点作为孩子结点的兄弟结点
  98. if (first) {
  99. (*T)->lchild=p;
  100. first=false;
  101. }
  102. //否则,为兄弟结点
  103. else{
  104. q->nextsibling=p;
  105. }
  106. q=p;
  107. //以当前访问的顶点为树根,继续访问其邻接点
  108. DFSTree(G, w, &q);
  109. }
  110. }
  111. }
  112. //深度优先搜索生成森林并转化为二叉树
  113. void DFSForest(MGraph G,CSTree *T){
  114. (*T)=NULL;
  115. //每个顶点的标记为初始化为false
  116. for (int v=0; v<G.vexnum; v++) {
  117. visited[v]=false;
  118. }
  119. CSTree q=NULL;
  120. //遍历每个顶点作为初始点,建立深度优先生成树
  121. for (int v=0; v<G.vexnum; v++) {
  122. //如果该顶点的标记位为false,证明未访问过
  123. if (!(visited[v])) {
  124. //新建一个结点,表示该顶点
  125. CSTree p=(CSTree)malloc(sizeof(CSNode));
  126. p->data=G.vexs[v];
  127. p->lchild=NULL;
  128. p->nextsibling=NULL;
  129. //如果树未空,则该顶点作为树的树根
  130. if (!(*T)) {
  131. (*T)=p;
  132. }
  133. //该顶点作为树根的兄弟结点
  134. else{
  135. q->nextsibling=p;
  136. }
  137. //每次都要把q指针指向新的结点,为下次添加结点做铺垫
  138. q=p;
  139. //以该结点为起始点,构建深度优先生成树
  140. DFSTree(G,v,&p);
  141. }
  142. }
  143. }
  144. //前序遍历二叉树
  145. void PreOrderTraverse(CSTree T){
  146. if (T) {
  147. printf("%d ",T->data);
  148. PreOrderTraverse(T->lchild);
  149. PreOrderTraverse(T->nextsibling);
  150. }
  151. return;
  152. }
  153. int main() {
  154. MGraph G;//建立一个图的变量
  155. CreateDN(&G);//初始化图
  156. CSTree T;
  157. DFSForest(G, &T);
  158. PreOrderTraverse(T);
  159. return 0;
  160. }

运行程序,拿图 4(a)中的非连通图为例,构建的深度优先生成森林,使用孩子兄弟表示法表示为:


 


图5 孩子兄弟表示法表示深度优先生成森林

图中,3 种颜色的树各代表一棵深度优先生成树,使用孩子兄弟表示法表示,也就是将三棵树的树根相连,第一棵树的树根作为整棵树的树根。


运行结果

13,13
1
2
3
4
5
6
7
8
9
10
11
12
13
1,2
1,3
1,6
1,12
2,13
4,5
7,8
7,10
7,9
8,10
11,12
11,13
12,13
1 2 13 11 12 3 6 4 5 7 8 10 9

广度优先生成森林

非连通图采用广度优先搜索算法进行遍历时,经过的顶点以及边的集合为该图的广度优先生成森林。

拿图 4(a)中的非连通图为例,通过广度优先搜索得到的广度优先生成森林用孩子兄弟表示法为:

 


图6 广度优先生成森林(孩子兄弟表示法)


实现代码为:

 
  1. #include <stdio.h>
  2. #include <stdlib.h>
  3. #define MAX_VERtEX_NUM 20 //顶点的最大个数
  4. #define VRType int //表示顶点之间的关系的变量类型
  5. #define InfoType char //存储弧或者边额外信息的指针变量类型
  6. #define VertexType int //图中顶点的数据类型
  7. typedef enum{false,true}bool; //定义bool型常量
  8. bool visited[MAX_VERtEX_NUM]; //设置全局数组,记录标记顶点是否被访问过
  9. typedef struct {
  10. VRType adj; //对于无权图,用 1 或 0 表示是否相邻;对于带权图,直接为权值。
  11. InfoType * info; //弧或边额外含有的信息指针
  12. }ArcCell,AdjMatrix[MAX_VERtEX_NUM][MAX_VERtEX_NUM];
  13. typedef struct {
  14. VertexType vexs[MAX_VERtEX_NUM]; //存储图中顶点数据
  15. AdjMatrix arcs; //二维数组,记录顶点之间的关系
  16. int vexnum,arcnum; //记录图的顶点数和弧(边)数
  17. }MGraph;
  18. typedef struct CSNode{
  19. VertexType data;
  20. struct CSNode * lchild;//孩子结点
  21. struct CSNode * nextsibling;//兄弟结点
  22. }*CSTree,CSNode;
  23. typedef struct Queue{
  24. CSTree data;//队列中存放的为树结点
  25. struct Queue * next;
  26. }Queue;
  27. //根据顶点本身数据,判断出顶点在二维数组中的位置
  28. int LocateVex(MGraph * G,VertexType v){
  29. int i=0;
  30. //遍历一维数组,找到变量v
  31. for (; i<G->vexnum; i++) {
  32. if (G->vexs[i]==v) {
  33. break;
  34. }
  35. }
  36. //如果找不到,输出提示语句,返回-1
  37. if (i>G->vexnum) {
  38. printf("no such vertex.\n");
  39. return -1;
  40. }
  41. return i;
  42. }
  43. //构造无向图
  44. void CreateDN(MGraph *G){
  45. scanf("%d,%d",&(G->vexnum),&(G->arcnum));
  46. for (int i=0; i<G->vexnum; i++) {
  47. scanf("%d",&(G->vexs[i]));
  48. }
  49. for (int i=0; i<G->vexnum; i++) {
  50. for (int j=0; j<G->vexnum; j++) {
  51. G->arcs[i][j].adj=0;
  52. G->arcs[i][j].info=NULL;
  53. }
  54. }
  55. for (int i=0; i<G->arcnum; i++) {
  56. int v1,v2;
  57. scanf("%d,%d",&v1,&v2);
  58. int n=LocateVex(G, v1);
  59. int m=LocateVex(G, v2);
  60. if (m==-1 ||n==-1) {
  61. printf("no this vertex\n");
  62. return;
  63. }
  64. G->arcs[n][m].adj=1;
  65. G->arcs[m][n].adj=1;//无向图的二阶矩阵沿主对角线对称
  66. }
  67. }
  68. int FirstAdjVex(MGraph G,int v)
  69. {
  70. //查找与数组下标为v的顶点之间有边的顶点,返回它在数组中的下标
  71. for(int i = 0; i<G.vexnum; i++){
  72. if( G.arcs[v][i].adj ){
  73. return i;
  74. }
  75. }
  76. return -1;
  77. }
  78. int NextAdjVex(MGraph G,int v,int w)
  79. {
  80. //从前一个访问位置w的下一个位置开始,查找之间有边的顶点
  81. for(int i = w+1; i<G.vexnum; i++){
  82. if(G.arcs[v][i].adj){
  83. return i;
  84. }
  85. }
  86. return -1;
  87. }
  88. //初始化队列
  89. void InitQueue(Queue ** Q){
  90. (*Q)=(Queue*)malloc(sizeof(Queue));
  91. (*Q)->next=NULL;
  92. }
  93. //结点v进队列
  94. void EnQueue(Queue **Q,CSTree T){
  95. Queue * element=(Queue*)malloc(sizeof(Queue));
  96. element->data=T;
  97. element->next=NULL;
  98. Queue * temp=(*Q);
  99. while (temp->next!=NULL) {
  100. temp=temp->next;
  101. }
  102. temp->next=element;
  103. }
  104. //队头元素出队列
  105. void DeQueue(Queue **Q,CSTree *u){
  106. (*u)=(*Q)->next->data;
  107. (*Q)->next=(*Q)->next->next;
  108. }
  109. //判断队列是否为空
  110. bool QueueEmpty(Queue *Q){
  111. if (Q->next==NULL) {
  112. return true;
  113. }
  114. return false;
  115. }
  116. void BFSTree(MGraph G,int v,CSTree*T){
  117. CSTree q=NULL;
  118. Queue * Q;
  119. InitQueue(&Q);
  120. //根结点入队
  121. EnQueue(&Q, (*T));
  122. //当队列为空时,证明遍历完成
  123. while (!QueueEmpty(Q)) {
  124. bool first=true;
  125. //队列首个结点出队
  126. DeQueue(&Q,&q);
  127. //判断结点中的数据在数组中的具体位置
  128. int v=LocateVex(&G,q->data);
  129. //已经访问过的更改其标志位
  130. visited[v]=true;
  131. //遍历以出队结点为起始点的所有邻接点
  132. for (int w=FirstAdjVex(G,v); w>=0; w=NextAdjVex(G,v, w)) {
  133. //标志位为false,证明未遍历过
  134. if (!visited[w]) {
  135. //新建一个结点 p,存放当前遍历的顶点
  136. CSTree p=(CSTree)malloc(sizeof(CSNode));
  137. p->data=G.vexs[w];
  138. p->lchild=NULL;
  139. p->nextsibling=NULL;
  140. //当前结点入队
  141. EnQueue(&Q, p);
  142. //更改标志位
  143. visited[w]=true;
  144. //如果是出队顶点的第一个邻接点,设置p结点为其左孩子
  145. if (first) {
  146. q->lchild=p;
  147. first=false;
  148. }
  149. //否则设置其为兄弟结点
  150. else{
  151. q->nextsibling=p;
  152. }
  153. q=p;
  154. }
  155. }
  156. }
  157. }
  158. //广度优先搜索生成森林并转化为二叉树
  159. void BFSForest(MGraph G,CSTree *T){
  160. (*T)=NULL;
  161. //每个顶点的标记为初始化为false
  162. for (int v=0; v<G.vexnum; v++) {
  163. visited[v]=false;
  164. }
  165. CSTree q=NULL;
  166. //遍历图中所有的顶点
  167. for (int v=0; v<G.vexnum; v++) {
  168. //如果该顶点的标记位为false,证明未访问过
  169. if (!(visited[v])) {
  170. //新建一个结点,表示该顶点
  171. CSTree p=(CSTree)malloc(sizeof(CSNode));
  172. p->data=G.vexs[v];
  173. p->lchild=NULL;
  174. p->nextsibling=NULL;
  175. //如果树未空,则该顶点作为树的树根
  176. if (!(*T)) {
  177. (*T)=p;
  178. }
  179. //该顶点作为树根的兄弟结点
  180. else{
  181. q->nextsibling=p;
  182. }
  183. //每次都要把q指针指向新的结点,为下次添加结点做铺垫
  184. q=p;
  185. //以该结点为起始点,构建广度优先生成树
  186. BFSTree(G,v,&p);
  187. }
  188. }
  189. }
  190. //前序遍历二叉树
  191. void PreOrderTraverse(CSTree T){
  192. if (T) {
  193. printf("%d ",T->data);
  194. PreOrderTraverse(T->lchild);
  195. PreOrderTraverse(T->nextsibling);
  196. }
  197. return;
  198. }
  199. int main() {
  200. MGraph G;//建立一个图的变量
  201. CreateDN(&G);//初始化图
  202. CSTree T;
  203. BFSForest(G, &T);
  204. PreOrderTraverse(T);
  205. return 0;
  206. }

运行结果为:

13,13
1
2
3
4
5
6
7
8
9
10
11
12
13
1,2
1,3
1,6
1,12
2,13
4,5
7,8
7,10
7,9
8,10
11,12
11,13
12,13
1 2 13 3 6 12 11 4 5 7 8 9 10

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/weixin_40725706/article/detail/923598
推荐阅读
相关标签
  

闽ICP备14008679号