赞
踩
这篇文章看理论确实足够了!BERT大火却不懂Transformer?读这一篇就够了
这篇文章是去年写的,今天重温发现有一些问题:
1.从代码来看,代码encoder和decoder的forward输入没有用类的src_embed和tgt_embed,这一点很奇怪,EncoderDecoder
forward传播decoder的输入与Decoder
中forward的输入不一致,我觉得这里不存在理论上的不一致,对代码的理解可能有问题。
2.我理解的输入和输出的节奏貌似与Transformer里的不一致,我觉得输入第一个需要翻译的单词时,decoder实际上是没有输入的,或者说是都被mask的输入。
2021-07-13
3.关于transformer的训练问题:训练并行,递归预测。这主要归功于transformer的下三角mask
attention_scores
包含当前及之前的位置(mask掉当前位置之后的位置),预测下一位置,由于预测时每个位置的结果已知,可以通过下三角并行。看到有评论需要完整代码的 https://github.com/harvardnlp/annotated-transformer
导入包
#!pip install http://download.pytorch.org/whl/cu80/torch-0.3.0.post4-cp36-cp36m-linux_x86_64.whl numpy matplotlib spacy torchtext seaborn
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import math, copy, time
from torch.autograd import Variable
import matplotlib.pyplot as plt
import seaborn
seaborn.set_context(context="talk")
%matplotlib inline
EncoderDecoder
类包含两个架构Encoer
和Decoder
,前向传播包含两个架构,同时也将两个架构单独定义,用于后面model.eval()
模型评估。其输入包含encoder,decoder
后面详细介绍,src_embed, tgt_embed
分别为输入和目标输出的enbedding
形式,最后一个参数generator
是用于将模型最后训练结果转化为概率值,实际是linear+softmax
激活。
class EncoderDecoder(nn.Module): """ A standard Encoder-Decoder architecture. Base for this and many other models. """ def __init__(self, encoder, decoder, src_embed, tgt_embed, generator): super(EncoderDecoder, self).__init__() self.encoder = encoder self.decoder = decoder self.src_embed = src_embed self.tgt_embed = tgt_embed self.generator = generator def forward(self, src, tgt, src_mask, tgt_mask): "Take in and process masked src and target sequences." return self.decode(self.encode(src, src_mask), src_mask, tgt, tgt_mask) def encode(self, src, src_mask): return self.encoder(self.src_embed(src), src_mask) def decode(self, memory, src_mask, tgt, tgt_mask): return self.decoder(self.tgt_embed(tgt), memory, src_mask, tgt_mask) class Generator(nn.Module): "Define standard linear + softmax generation step." def __init__(self, d_model, vocab): super(Generator, self).__init__() self.proj = nn.Linear(d_model, vocab) def forward(self, x): return F.log_softmax(self.proj(x), dim=-1)
Encoder
架构是将多层EncoderLayer
连接,这里用到clones函数,复制多个layer
返回ModuleList
def clones(module, N):
"Produce N identical layers."
return nn.ModuleList([copy.deepcopy(module) for _ in range(N)])
class Encoder(nn.Module):
"Core encoder is a stack of N layers"
def __init__(self, layer, N):
super(Encoder, self).__init__()
self.layers = clones(layer, N)
self.norm = LayerNorm(layer.size)
def forward(self, x, mask):
"Pass the input (and mask) through each layer in turn."
for layer in self.layers:
x = layer(x, mask)
return self.norm(x)
编码器每个模块有两个子层:multi-head自注意力层和逐位置全连接前馈网络。
其中,这两个子层都有包含残差连接SublayerConnection
,其中残差连接前会进行LayerNorm
-层归一化
。实际上是对本层的输入进行norm
,这里从代码可以看出,模型的输入其实也是做了一个norm
。
注意:层均一化与BN归一化不同,BN是对一批样本的每个特征分别进行归一化,在(N,C,H,W)的四维张量里,一个特征不是一个像素,而是一个通道。因此要对N,H,W三个维度进行归一化。LN针对的是每一个batch的每一层的神经元的输入,因此不依赖于batch和sequence长度,一个特征是一个单词,代码中体现也就是最后一个维度。 Norm总结
#LN是针对一个样本来做的均值归一化,BN针对一个batch class LayerNorm(nn.Module): "Construct a layernorm module (See citation for details)." def __init__(self, features, eps=1e-6): super(LayerNorm, self).__init__() self.a_2 = nn.Parameter(torch.ones(features)) self.b_2 = nn.Parameter(torch.zeros(features)) self.eps = eps def forward(self, x): mean = x.mean(-1, keepdim=True) std = x.std(-1, keepdim=True) return self.a_2 * (x - mean) / (std + self.eps) + self.b_2 class SublayerConnection(nn.Module): """ A residual connection followed by a layer norm. Note for code simplicity the norm is first as opposed to last. """ def __init__(self, size, dropout): super(SublayerConnection, self).__init__() self.norm = LayerNorm(size) self.dropout = nn.Dropout(dropout) def forward(self, x, sublayer): "Apply residual connection to any sublayer with the same size." return x + self.dropout(sublayer(self.norm(x)))
有了上述铺垫,我们就有了EncoderLayer
,当然还有一个最重要的Multi-head
放到后面来看。
class EncoderLayer(nn.Module):
"Encoder is made up of self-attn and feed forward (defined below)"
def __init__(self, size, self_attn, feed_forward, dropout):
super(EncoderLayer, self).__init__()
self.self_attn = self_attn
self.feed_forward = feed_forward
self.sublayer = clones(SublayerConnection(size, dropout), 2)
self.size = size
def forward(self, x, mask):
"Follow Figure 1 (left) for connections."
x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, mask))
return self.sublayer[1](x, self.feed_forward)
Decder
与Encoder
类似,不同点在于DecoderLayer
一层中有两个自注意力子层,第二个自注意力子层key,value
连接Encoder
的输出,即编码层的的输出从代码来看K和V相同,与编码层类似,在多头自注意力模型中会乘一个变换矩阵。
class Decoder(nn.Module): "Generic N layer decoder with masking." def __init__(self, layer, N): super(Decoder, self).__init__() self.layers = clones(layer, N) self.norm = LayerNorm(layer.size) def forward(self, x, memory, src_mask, tgt_mask): for layer in self.layers: x = layer(x, memory, src_mask, tgt_mask) return self.norm(x) class DecoderLayer(nn.Module): "Decoder is made of self-attn, src-attn, and feed forward (defined below)" def __init__(self, size, self_attn, src_attn, feed_forward, dropout): super(DecoderLayer, self).__init__() self.size = size self.self_attn = self_attn self.src_attn = src_attn self.feed_forward = feed_forward self.sublayer = clones(SublayerConnection(size, dropout), 3) def forward(self, x, memory, src_mask, tgt_mask): "Follow Figure 1 (right) for connections." m = memory x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, tgt_mask)) x = self.sublayer[1](x, lambda x: self.src_attn(x, m, m, src_mask)) return self.sublayer[2](x, self.feed_forward)
前面提到,输入包含mask
,修正编码器层中的自注意力子层,以防止当前位置注意到后续序列位置。
def subsequent_mask(size):
"Mask out subsequent positions."
attn_shape = (1, size, size)
subsequent_mask = np.triu(np.ones(attn_shape), k=1).astype('uint8') #
return torch.from_numpy(subsequent_mask) == 0# 返回上三角为0的torch Tensor
#test查看
plt.figure(figsize=(5,5))
plt.imshow(subsequent_mask(20)[0])
Multi-Head Attention
分为两点,多头和自注意力。自注意力可以通过下面函数实现,其实际上就是两个矩阵点乘,输入包含query,key,value,mask
。
def attention(query, key, value, mask=None, dropout=None): "Compute 'Scaled Dot Product Attention'" d_k = query.size(-1) # (batch_size, heads, max_seq_len, d_k) * (batch_size, heads, d_k, max_seq_len) scores = torch.matmul(query, key.transpose(-2, -1)) \ / math.sqrt(d_k) if mask is not None: # 对于padding部分,赋予一个极大的负数,softmax后该项的分数就接近0了,表示贡献很小 # masked_fill(mask,value)在mask为1的地方填充 scores = scores.masked_fill(mask == 0, -1e9) # masked_fill(mask) p_attn = F.softmax(scores, dim = -1) if dropout is not None: p_attn = dropout(p_attn) # (batch_size, heads, max_seq_len, max_seq_len) * (batch_size, heads, max_seq_len, d_k) # = (batch_size, heads, max_seq_len, d_k) return torch.matmul(p_attn, value), p_attn
有了自注意力计算函数,就可以得到下面的自注意力类
class MultiHeadedAttention(nn.Module): def __init__(self, h, d_model, dropout=0.1): "Take in model size and number of heads." super(MultiHeadedAttention, self).__init__() assert d_model % h == 0 # We assume d_v always equals d_k self.d_k = d_model // h self.h = h self.linears = clones(nn.Linear(d_model, d_model), 4) self.attn = None self.dropout = nn.Dropout(p=dropout) def forward(self, query, key, value, mask=None): "Implements Figure 2" if mask is not None: # Same mask applied to all h heads. mask = mask.unsqueeze(1) nbatches = query.size(0) # batch_size # 1) Do all the linear projections in batch from d_model => h x d_k query, key, value = \ [l(x).view(nbatches, -1, self.h, self.d_k).transpose(1, 2) # view转换数据的维度 for l, x in zip(self.linears, (query, key, value))] # 2) Apply attention on all the projected vectors in batch. x, self.attn = attention(query, key, value, mask=mask, dropout=self.dropout) # 3) "Concat" using a view and apply a final linear. # 返回一个内存连续的有相同数据的tensor x = x.transpose(1, 2).contiguous() \ .view(nbatches, -1, self.h * self.d_k) return self.linears[-1](x)
两个全连接层
class PositionwiseFeedForward(nn.Module):
"Implements FFN equation."
def __init__(self, d_model, d_ff, dropout=0.1):
super(PositionwiseFeedForward, self).__init__()
self.w_1 = nn.Linear(d_model, d_ff)
self.w_2 = nn.Linear(d_ff, d_model)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
return self.w_2(self.dropout(F.relu(self.w_1(x))))
class Embeddings(nn.Module):
def __init__(self, d_model, vocab):
super(Embeddings, self).__init__()
self.lut = nn.Embedding(vocab, d_model)
self.d_model = d_model
def forward(self, x):
return self.lut(x) * math.sqrt(self.d_model)
位置编码是Transformer模型中最后一个需要注意的结构,它对使用注意力机制实现序列任务也是非常重要的部分。如上文所述,Transformer使用自注意力机制抽取序列的内部特征,但这种代替RNN或CNN抽取特征的方法有很大的局限性,即它不能捕捉序列的顺序。这样的模型即使能根据语境翻译出每一个词的意义,也组不成完整的语句。
为了令模型能利用序列的顺序信息,我们必须植入一些关于词汇在序列中相对或绝对位置的信息。直观来说,如果语句中每一个词都有特定的位置,那么每一个词都可以使用向量编码位置信息。将这样的位置向量与词嵌入向量相结合,那么我们就为每一个词引入了一定的位置信息,注意力机制也就能分辨出不同位置的词。
class PositionalEncoding(nn.Module): "Implement the PE function." def __init__(self, d_model, dropout, max_len=5000): super(PositionalEncoding, self).__init__() self.dropout = nn.Dropout(p=dropout) # Compute the positional encodings once in log space. pe = torch.zeros(max_len, d_model) # [max_len,d_model] position = torch.arange(0., max_len).unsqueeze(1) # [max_len,1] div_term = torch.exp(torch.arange(0., d_model, 2) * -(math.log(10000.0) / d_model)) # [1,d_model/2] pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0) # [1,max_len,d_model] self.register_buffer('pe', pe) # 注册buffer,不会更新参数 def forward(self, x): # x = [1,wordnum,d_model] # 位置编码 + 词向量 x.size(1)为单词的个数 x = x + Variable(self.pe[:, :x.size(1)], requires_grad=False) return self.dropout(x)
def make_model(src_vocab, tgt_vocab, N=6, d_model=512, d_ff=2048, h=8, dropout=0.1): "Helper: Construct a model from hyperparameters." c = copy.deepcopy attn = MultiHeadedAttention(h, d_model) ff = PositionwiseFeedForward(d_model, d_ff, dropout) position = PositionalEncoding(d_model, dropout) model = EncoderDecoder( Encoder(EncoderLayer(d_model, c(attn), c(ff), dropout), N), Decoder(DecoderLayer(d_model, c(attn), c(attn), c(ff), dropout), N), nn.Sequential(Embeddings(d_model, src_vocab), c(position)), nn.Sequential(Embeddings(d_model, tgt_vocab), c(position)), Generator(d_model, tgt_vocab)) # This was important from their code. # Initialize parameters with Glorot / fan_avg. for p in model.parameters(): if p.dim() > 1: nn.init.xavier_uniform(p) return model
构建一个简易网络测试
#Small example model.
tmp_model = make_model(10, 10, 2)
tmp_model
下面我们定义一个批处理对象,它包含用于训练的src和目标句,以及构造掩码
class Batch: "Object for holding a batch of data with mask during training." def __init__(self, src, trg=None, pad=0): self.src = src # (batch,单词数) self.src_mask = (src != pad).unsqueeze(-2) # if trg is not None: self.trg = trg[:, :-1] self.trg_y = trg[:, 1:] # target 评估 self.trg_mask = \ self.make_std_mask(self.trg, pad) self.ntokens = (self.trg_y != pad).data.sum() @staticmethod def make_std_mask(tgt, pad): # 隐藏 pad + future words "Create a mask to hide padding and future words." tgt_mask = (tgt != pad).unsqueeze(-2) # 不为0(pad)记为1 ==> mask tgt_mask = tgt_mask & Variable( subsequent_mask(tgt.size(-1)).type_as(tgt_mask.data)) # 1并1才为1,所以有一个为0则为0 return tgt_mask
以下定义的一个计算batch_size的函数,在测试阶段暂时用不到。
global max_src_in_batch, max_tgt_in_batch
def batch_size_fn(new, count, sofar):
"Keep augmenting batch and calculate total number of tokens + padding."
global max_src_in_batch, max_tgt_in_batch
if count == 1:
max_src_in_batch = 0
max_tgt_in_batch = 0
max_src_in_batch = max(max_src_in_batch, len(new.src))
max_tgt_in_batch = max(max_tgt_in_batch, len(new.trg) + 2)
src_elements = count * max_src_in_batch
tgt_elements = count * max_tgt_in_batch
return max(src_elements, tgt_elements)
计算step,根据step更新学习率
#Note: This part is incredibly important. #Need to train with this setup of the model is very unstable. class NoamOpt: "Optim wrapper that implements rate." def __init__(self, model_size, factor, warmup, optimizer): self.optimizer = optimizer self._step = 0 self.warmup = warmup self.factor = factor self.model_size = model_size self._rate = 0 def step(self): "Update parameters and rate" self._step += 1 rate = self.rate() for p in self.optimizer.param_groups: p['lr'] = rate self._rate = rate self.optimizer.step() def rate(self, step = None): "Implement `lrate` above" if step is None: step = self._step return self.factor * \ (self.model_size ** (-0.5) * min(step ** (-0.5), step * self.warmup**(-1.5))) def get_std_opt(model): return NoamOpt(model.src_embed[0].d_model, 2, 4000, torch.optim.Adam(model.parameters(), lr=0, betas=(0.9, 0.98), eps=1e-9)) #test查看优化模型在不同模型尺寸和优化超参数的学习率 #Three settings of the lrate hyperparameters. opts = [NoamOpt(512, 1, 4000, None), NoamOpt(512, 1, 8000, None), NoamOpt(256, 1, 4000, None)] plt.plot(np.arange(1, 20000), [[opt.rate(i) for opt in opts] for i in range(1, 20000)]) plt.legend(["512:4000", "512:8000", "256:4000"]) None
LabelSmoothing
实际是防止预测结果过于自信,添加了一个通常为均匀分布的噪声。代码如下LabelSmoothing
#https://blog.csdn.net/lqfarmer/article/details/74276680 class LabelSmoothing(nn.Module): "Implement label smoothing." def __init__(self, size, padding_idx, smoothing=0.0): super(LabelSmoothing, self).__init__() self.criterion = nn.KLDivLoss(size_average=False) self.padding_idx = padding_idx self.confidence = 1.0 - smoothing self.smoothing = smoothing self.size = size self.true_dist = None def forward(self, x, target): assert x.size(1) == self.size true_dist = x.data.clone() # 复制x true_dist.fill_(self.smoothing / (self.size - 2)) # e*u(k)填充 true_dist.scatter_(1, target.data.unsqueeze(1), self.confidence) # scatter_(input, dim, index, src) 按行dim=1赋值,index以target为准 赋的值(1-smooth)*q(y|x) true_dist[:, self.padding_idx] = 0 mask = torch.nonzero(target.data == self.padding_idx) # [[2]]获取target数据等于padding_的索引 if mask.dim() > 0: true_dist.index_fill_(0, mask.squeeze(), 0.0) # index_fill_(dim,index,val)在dim维度填充index为2值为0 self.true_dist = true_dist return self.criterion(x, Variable(true_dist, requires_grad=False)) # KL 散度
以下可以查看LabelSmoothing
对预测值损失的计算影响,这里可以打印实际输出的真值,查看噪声影响。
#Example of label smoothing. 可视化真值分布
crit = LabelSmoothing(5, 0, 0.4)
predict = torch.FloatTensor([[0, 0.2, 0.7, 0.1, 0],
[0, 0.2, 0.7, 0.1, 0],
[0, 0.2, 0.7, 0.1, 0]])
v = crit(Variable(predict.log()),
Variable(torch.LongTensor([2, 1, 0])))
#Show the target distributions expected by the system. 真值分布
plt.imshow(crit.true_dist)
None
标签平滑实际上在模型对某些选项非常有信心的时候会惩罚它。
#x增大在一定程度上 loss增大
crit = LabelSmoothing(5, 0, 0.2)
def loss(x):
d = x + 3 * 1
predict = torch.FloatTensor([[0, x / d, 1 / d, 1 / d, 1 / d],
])
#print(predict)
return crit(Variable(predict.log()),
Variable(torch.LongTensor([1]))).item()
plt.plot(np.arange(1, 100), [loss(x) for x in range(1, 100)])
#合成数据
def data_gen(V, batch, nbatches):
"Generate random data for a src-tgt copy task."
for i in range(nbatches):
data = torch.from_numpy(np.random.randint(1, V, size=(batch, 10))) #(batch=batch_size,10)
data[:, 0] = 1 # 这里感觉不是填充,而是start_symbol
src = Variable(data, requires_grad=False)
tgt = Variable(data, requires_grad=False)
yield Batch(src, tgt, 0)
#损失计算 class SimpleLossCompute: "A simple loss compute and train function." def __init__(self, generator, criterion, opt=None): self.generator = generator self.criterion = criterion self.opt = opt def __call__(self, x, y, norm): x = self.generator(x) loss = self.criterion(x.contiguous().view(-1, x.size(-1)), y.contiguous().view(-1)) / norm loss.backward() if self.opt is not None: self.opt.step() self.opt.optimizer.zero_grad() return loss.data * norm
#Train the simple copy task. V = 11 criterion = LabelSmoothing(size=V, padding_idx=0, smoothing=0.0) model = make_model(V, V, N=2) #优化器 model_opt = NoamOpt(model.src_embed[0].d_model, 1, 400, torch.optim.Adam(model.parameters(), lr=0, betas=(0.9, 0.98), eps=1e-9)) for epoch in range(10): model.train() # 训练模式 # run_epoch(data_gen(V,batch,nbatch),model,losscompute) run_epoch(data_gen(V, 30, 20), model, SimpleLossCompute(model.generator, criterion, model_opt)) model.eval() print(run_epoch(data_gen(V, 30, 5), model, SimpleLossCompute(model.generator, criterion, None)))
def greedy_decode(model, src, src_mask, max_len, start_symbol): memory = model.encode(src, src_mask) ys = torch.ones(1, 1).fill_(start_symbol).type_as(src.data) for i in range(max_len-1): out = model.decode(memory, src_mask, Variable(ys), Variable(subsequent_mask(ys.size(1)) .type_as(src.data))) prob = model.generator(out[:, -1]) _, next_word = torch.max(prob, dim = 1) next_word = next_word.data[0] ys = torch.cat([ys, torch.ones(1, 1).type_as(src.data).fill_(next_word)], dim=1) return ys model.eval() # 评估模式 src = Variable(torch.LongTensor([[1,2,3,4,5,6,7,8,9,10]]) ) src_mask = Variable(torch.ones(1, 1, 10) ) print(greedy_decode(model, src, src_mask, max_len=10, start_symbol=1))
关于真实样本的训练,受限于GPU暂时先不更新了。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。