赞
踩
将数据放在一个txt中,每行为一条,文章正文跟label的摘要用\t分割
from datasets import Dataset class Data: def __init__(self, data_path, tokenizer): self.path = data_path self.max_input_length = 1024 self.max_target_length = 150 # self.tokenizer = AutoTokenizer.from_pretrained(pretrained_model_path) self.tokenizer = tokenizer def preprocess(self, train_scale=0.8): with open(self.path,'r') as f: raw_data = f.readlines() print(f"=======data_len: {len(raw_data)}") start = int(len(raw_data)*train_scale) print(f"======train_len: {start}") raw_train_data = raw_data[:start] raw_test_data = raw_data[start:] raw_train_test_data = {'train':{'id':[],'document':[],'summary':[]}, \ 'test':{'id':[],'document':[],'summary':[]}} for i,item in enumerate(raw_train_data): if len(item.split('\t')) != 3: continue url,text,label = item.split('\t') raw_train_test_data['train']['id'].append(i) # document 是训练数据, summary是label raw_train_test_data['train']['summary'].append(label.strip()) raw_train_test_data['train']['document'].append(text.strip()) for j,item in enumerate(raw_test_data): if len(item.split('\t')) != 3: continue url,text,label = item.split('\t') raw_train_test_data['test']['id'].append(i+j+1) raw_train_test_data['test']['summary'].append(label.strip()) raw_train_test_data['test']['document'].append(text.strip()) def preprocess_function(examples): # document 是训练数据 inputs = examples['document'] model_inputs = self.tokenizer(inputs, max_length = self.max_input_length, padding = 'max_length', truncation=True) # summary是label with self.tokenizer.as_target_tokenizer(): labels = self.tokenizer(examples['summary'], max_length = self.max_target_length, padding = 'max_length', truncation = True) model_inputs['labels'] = labels['input_ids'] return model_inputs train_dataset = Dataset.from_dict(raw_train_test_data['train']) test_dataset = Dataset.from_dict(raw_train_test_data['test']) tokenized_train_dataset = train_dataset.map(preprocess_function) tokenized_test_dataset = test_dataset.map(preprocess_function) return tokenized_train_dataset, tokenized_test_dataset
from transformers import AutoModelForSeq2SeqLM, DataCollatorForSeq2Seq, Seq2SeqTrainingArguments, Seq2SeqTrainer
from transformers import BartForConditionalGeneration
checkpoint = "distilbart-xsum-9-6"
model = BartForConditionalGeneration.from_pretrained(checkpoint)
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
from rouge_score import rouge_scorer, scoring def compute(predictions, references, rouge_types=None, use_agregator=True, use_stemmer=False): if rouge_types is None: rouge_types = ["rouge1", "rouge2", "rougeL", "rougeLsum"] scorer = rouge_scorer.RougeScorer(rouge_types=rouge_types, use_stemmer=use_stemmer) if use_agregator: aggregator = scoring.BootstrapAggregator() else: scores = [] for ref, pred in zip(references, predictions): score = scorer.score(ref, pred) if use_agregator: aggregator.add_scores(score) else: scores.append(score) if use_agregator: result = aggregator.aggregate() else: result = {} for key in scores[0]: result[key] = list(score[key] for score in scores) return result #metrics def compute_metrics(eval_pred): predictions, labels = eval_pred decoded_preds = tokenizer.batch_decode(predictions, skip_special_tokens=True) # Replace -100 in the labels as we can't decode them. labels = np.where(labels != -100, labels, tokenizer.pad_token_id) decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True) # Rouge expects a newline after each sentence decoded_preds = ["\n".join(nltk.sent_tokenize(pred.strip())) for pred in decoded_preds] decoded_labels = ["\n".join(nltk.sent_tokenize(label.strip())) for label in decoded_labels] result = compute(predictions=decoded_preds, references=decoded_labels, use_stemmer=True) # Extract a few results result = {key: value.mid.fmeasure * 100 for key, value in result.items()} # Add mean generated length prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in predictions] result["gen_len"] = np.mean(prediction_lens) return {k: round(v, 4) for k, v in result.items()}
batch_size = 1 args = Seq2SeqTrainingArguments( \ "/data/yuhengshi/europe_summary/model", \ evaluation_strategy = 'steps', \ learning_rate = 3e-5, \ per_device_train_batch_size = batch_size, \ per_device_eval_batch_size = batch_size, \ weight_decay = 0.1, \ save_steps = 200, \ save_total_limit = 10, \ num_train_epochs = 5, \ predict_with_generate = True, \ fp16 = True, \ eval_steps = 200, \ logging_dir="/data/yuhengshi/europe_summary/log", \ logging_first_step=True)
data_collator = DataCollatorForSeq2Seq(tokenizer, model = model, padding=True)
data = Data('/data/yuhengshi/europe_summary/data_no_daily_news.txt', tokenizer)
tokenized_train_dataset, tokenized_test_dataset = data.preprocess()
trainer =Seq2SeqTrainer( \
model, \
args, \
train_dataset = tokenized_train_dataset, \
eval_dataset = tokenized_test_dataset, \
data_collator = data_collator, \
tokenizer = tokenizer, \
compute_metrics = compute_metrics)
从下面step中选loss跟rouge都比较好的
def predict(sentence):
inputs = tokenizer([sentence],max_length = 1024, return_tensors='pt')
summary_ids = model.generate(inputs['input_ids'], num_beams=70, max_length=150,min_length=50,early_stopping=True)
summary = [tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in summary_ids]
return ' '.join(summary)
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。