赞
踩
# import scipy.misc import imageio import scipy.ndimage import numpy as np from keras.preprocessing import image from keras.applications import inception_v3 from keras import backend as K # 禁用所有与训练有关的操作 K.set_learning_phase(0) # 构建不包括全连接层的Inception V3网络 使用预训练的ImageNet权重来加载模型 model = inception_v3.InceptionV3(weights='imagenet', include_top=False) # 这个字典将层的名称映射为一个系数,这个系数定量表示该层激活对你要最大化的损失的贡献大小。 # 注意,层的名称硬编码在内置的 Inception V3 应用中。可以使用 model.summary() 列出所有层的名称 layer_contributions = { 'mixed2': 0.2, 'mixed3': 3., 'mixed4': 2., 'mixed5': 1.5, } # 创建一个字典,将层的名称映射为层的实例 layer_dict = dict([(layer.name, layer) for layer in model.layers]) # 在定义损失时将层的贡献添加到这个标量变量中 loss = K.variable(0.) for layer_name in layer_contributions: coeff = layer_contributions[layer_name] activation = layer_dict[layer_name].output # 获取层的输出 scaling = K.prod(K.cast(K.shape(activation), 'float32')) # 将该层特征的L2范数添加到loss中。为了避免出现边界伪影,损失中仅包含非边界的像素 loss += coeff * K.sum(K.square(activation[:, 2: -2, 2: -2, :])) / scaling dream = model.input grads = K.gradients(loss, dream)[0] grads /= K.maximum(K.mean(K.abs(grads)), 1e-7) outputs = [loss, grads] fetch_loss_and_grads = K.function([dream], outputs) def eval_loss_and_grads(x): outs = fetch_loss_and_grads([x]) loss_value = outs[0] grad_values = outs[1] return loss_value, grad_values def gradient_ascent(x, iterations, step, max_loss=None): for i in range(iterations): loss_value, grad_values = eval_loss_and_grads(x) if max_loss is not None and loss_value > max_loss: break print('...Loss value at', i, ':', loss_value) x += step * grad_values return x def resize_img(img, size): img = np.copy(img) factors = (1, float(size[0]) / img.shape[1], float(size[1]) / img.shape[2], 1) return scipy.ndimage.zoom(img, factors, order=1) def save_img(img, fname): pil_img = deprocess_image(np.copy(img)) # scipy.misc.imsave(fname, pil_img) # 老版本报错,用新版本的imageio imageio.imsave(fname, pil_img) def preprocess_image(image_path): # Util function to open, resize and format pictures into appropriate tensors. # 通用函数,用于打开图像、改变图像大小以及将图像格式转换为 Inception V3 模型能够处理的张量 img = image.load_img(image_path) img = image.img_to_array(img) img = np.expand_dims(img, axis=0) img = inception_v3.preprocess_input(img) return img def deprocess_image(x): # Util function to convert a tensor into a valid image. # 通用函数,将一个张量转换为有效图像. if K.image_data_format() == 'channels_first': x = x.reshape((3, x.shape[2], x.shape[3])) x = x.transpose((1, 2, 0)) else: x = x.reshape((x.shape[1], x.shape[2], 3)) x /= 2. x += 0.5 x *= 255. x = np.clip(x, 0, 255).astype('uint8') return x # Playing with these hyperparameters will also allow you to achieve new effects step = 0.01 # Gradient ascent step size, 梯度上升的步长 num_octave = 3 # Number of scales at which to run gradient ascent,运行梯度上升的尺度个数 octave_scale = 1.4 # Size ratio between scales, 两个尺度之间的大小比例 iterations = 20 # Number of ascent steps per scale, 在每个尺度上运行梯度上升的步数 # If our loss gets larger than 10, we will interrupt the gradient ascent process, to avoid ugly artifacts # 如果损失增大到大于 10,我们要中断梯度上升过程,以避免得到丑陋的伪影 max_loss = 10. # 使用的图像 base_image_path = '/mnt/projects/deeplearn/codes/test8_1.jpg' # Load the image into a Numpy array img = preprocess_image(base_image_path) # We prepare a list of shape tuples defining the different scales at which we will run gradient ascent # 准备一个由形状元组组成的列表,它定义了运行梯度上升的不同尺度 original_shape = img.shape[1:3] successive_shapes = [original_shape] for i in range(1, num_octave): shape = tuple([int(dim / (octave_scale ** i)) for dim in original_shape]) successive_shapes.append(shape) # Reverse list of shapes, so that they are in increasing order successive_shapes = successive_shapes[::-1] # Resize the Numpy array of the image to our smallest scale original_img = np.copy(img) shrunk_original_img = resize_img(img, successive_shapes[0]) for shape in successive_shapes: print('Processing image shape', shape) img = resize_img(img, shape) img = gradient_ascent(img, iterations=iterations, step=step, max_loss=max_loss) upscaled_shrunk_original_img = resize_img(shrunk_original_img, shape) same_size_original = resize_img(original_img, shape) lost_detail = same_size_original - upscaled_shrunk_original_img img += lost_detail shrunk_original_img = resize_img(original_img, shape) save_img(img, fname='dream_at_scale_' + str(shape) + '.png') save_img(img, fname='final_dream.png')
原始图片:
结果图片:
dream_at_scale_(169, 254).png
dream_at_scale_(237, 356).png
dream_at_scale_(333, 499).png
final最终结果图片:
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。