赞
踩
有人说,过去的一年是AGI元年,其实这一次人工智能产业革命早就开始了,过去的一年可以说是生成式AI能力全面开始爆发的一年。
自 1956 年提出人工智能(AI)以来,AI 产业与技术不断发展, AI 大模型成为一训多能的人工智能算法基础设施,2019年以来,大模型泛化求解能力大幅提升,成为产业主流技术路线。AI 大模型是“人工智能预训练大模型”的简称,包含了“预训练”和“大模型” 两层含义。“大模型+小模型”逐步成为产业主流技术路线,驱动全球 AI产业的全面加速。
但对于AIGC 领域而言,这仅仅是一个开始更大的变革尚待开启。在过去的深度学习黄金十年,人工智能的感知、理解能力不断增强,为 AIGC的爆发奠定基础。如今,随着生成算法、大模型、多模态技术等AI 技术的持续创新和发展成熟,Al领域正在经历从感知、理解到生成、创造的跃迁。以 AIGC 这一新的疆域为标志 AI 领域正在迎来下一个时代。融合大模型和多模态技术的 AIGC 模型,有望成为新的技术平台深度赋能各行各业。
生成式AI在2021年、2022年和2023年将继续发力,持续取得进展。
生产式AI迅速在应用端形成强大的产业地图。形成了多条明显的赛道。
当下生成式AI总结如下:
1.技术的突破:生成式AI利用深度学习和神经网络等技术手段,实现了对自然语言的生成和理解能力的显著提升。这些技术的突破使得生成式AI能够生成具有逻辑和连贯性的文本,并能够理解和回应人类的语义。
2.应用领域的拓展:生成式AI已经广泛应用于多个领域,包括自然语言处理、机器翻译、对话系统、写作助手、虚拟主持人等。它不仅可以生成新闻、文章、故事等文本内容,还可以进行对话、提供答案和建议等。生成式AI的拓展应用使得其在人机交互、知识传递和创意生成等方面发挥了重要作用。
3.社交媒体的影响:生成式AI的大爆发也与社交媒体的快速发展密不可分。社交媒体平台如微博、微信、Twitter等提供了大量的文本数据,这为生成式AI提供了训练和优化的数据基础。同时,生成式AI也能够为社交媒体用户提供更好的表达和交流工具,丰富了社交媒体的内容和功能。
4.伦理和隐私问题的关注:生成式AI的大爆发也引发了一系列伦理和隐私问题的关注。大规模生成文本的能力使得虚假信息和网络谣言的传播更加便利,同时也增加了内容的复制和抄袭的可能性。此外,生成式AI在用户隐私和信息安全方面也存在潜在的风险,需要加强监管和保护措施。
一、工具型应用领域
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。