赞
踩
系统:win10
1、安装 Anaconda,安装教程请自行百度。这里我使用的版本是:
- C:\Users\HaiBin>conda --version
- conda 4.8.3
2、安装python
- C:\Users\HaiBin>python --version
- Python 3.7.6
3、在查找中,输入Anaconda Prompt命令,并运行它。
运行后
准备工作到这里,基本完成,接下来,安装TensorFlow2和Keras。
1、在Anaconda prompt窗口输入下面的命令,创建一个环境
(base) C:\Users\HaiBin>conda create -n tf2 python=3.7.6
这是新建一个名为tf2,并且python版本是3.7.6的一个环境
2、切换到刚刚创建的tf2环境中,准备安装TensorFlow2,输入如下命令:
(base) C:\Users\HaiBin>conda activate tf2
3、安装TensorFlow2
(tf2) C:\Users\HaiBin>pip install tensorflow==2.0.0
1、安装Keras前,先依次安装下面的这个库
- (tf2) C:\Users\HaiBin>conda install mingw libpython
- (tf2) C:\Users\HaiBin>pip install theano
2、最后安装keras
(tf2) C:\Users\HaiBin>pip install keras==2.3.1
注意:keras一定要和你的TensorFlow版本匹配,因为我安装的TensorFlow是2.0.0版本,与它对应的是keras2.3.1
以上命令均在Anaconda prompt窗口中完成,否则有可能安装不成功。
运行python,输入import keras回车后,结果出来Using TensorFlow backend.表示TensorFlow安装成功。
- (tf2_keras) C:\Users\HaiBin>python
- Python 3.7.6 (default, Jan 8 2020, 20:23:39) [MSC v.1916 64 bit (AMD64)] :: Anaconda, Inc. on win32
- Type "help", "copyright", "credits" or "license" for more information.
- >>> import keras
- Using TensorFlow backend.
- >>>
接下来,需要将上面新建的环境配置到pycharm中
1、创建一个新的项目,如下图:
到始,TensorFlow2和Keras已经成功安装完成了。
来段代码测试,试一试:
- from keras.datasets import mnist
- from keras.utils import to_categorical
-
- train_X, train_y = mnist.load_data()[0]
- train_X = train_X.reshape(-1, 28, 28, 1)
- train_X = train_X.astype('float32')
- train_X /= 255
- train_y = to_categorical(train_y, 10)
-
- from keras.models import Sequential
- from keras.layers import Conv2D, MaxPool2D, Flatten, Dropout, Dense
- from keras.losses import categorical_crossentropy
- from keras.optimizers import Adadelta
-
- model = Sequential()
- model.add(Conv2D(32, (5,5), activation='relu', input_shape=[28, 28, 1]))
- model.add(Conv2D(64, (5,5), activation='relu'))
- model.add(MaxPool2D(pool_size=(2,2)))
- model.add(Flatten())
- model.add(Dropout(0.5))
- model.add(Dense(128, activation='relu'))
- model.add(Dropout(0.5))
- model.add(Dense(10, activation='softmax'))
-
- model.compile(loss=categorical_crossentropy,
- optimizer=Adadelta(),
- metrics=['accuracy'])
-
- batch_size = 100
- epochs = 8
- model.fit(train_X, train_y,
- batch_size=batch_size,
- epochs=epochs)
-
- test_X, test_y = mnist.load_data()[1]
- test_X = test_X.reshape(-1, 28, 28, 1)
- test_X = test_X.astype('float32')
- test_X /= 255
- test_y = to_categorical(test_y, 10)
- loss, accuracy = model.evaluate(test_X, test_y, verbose=1)
- print('loss:%.4f accuracy:%.4f' %(loss, accuracy))
运行结果:
- TypeError: Descriptors cannot not be created directly.
- If this call came from a _pb2.py file, your generated code is out of date and must be regenerated with protoc >= 3.19.0.
- If you cannot immediately regenerate your protos, some other possible workarounds are:
- 1. Downgrade the protobuf package to 3.20.x or lower.
- 2. Set PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python (but this will use pure-Python parsing and will be much slower).
这说明我们使用的protobuf库的版本高了,可以卸载已经安装过的protobuf 版本,再安装3.20.x以下的版本,我们可以使用3.19.0版本即可,命令如下:
1、卸载protobuf 已经安装的版本
(tf2) C:\Users\HaiBin>pip uninstall protobuf
2、安装3.19.0版本
(tf2) C:\Users\HaiBin>pip install protobuf==3.19.0
3、测试keras是否安装成功
- (tf2) C:\Users\HaiBin>python
- Python 3.7.6 (default, Jan 8 2020, 20:23:39) [MSC v.1916 64 bit (AMD64)] :: Anaconda, Inc. on win32
- Type "help", "copyright", "credits" or "license" for more information.
- >>> import keras
- Using TensorFlow backend.
- >>>
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。