当前位置:   article > 正文

第18课:模型部署上线的几种服务发布方式_如何将分布式文件系统上的大模型发布为模型服务

如何将分布式文件系统上的大模型发布为模型服务

在前面所有的模型训练和预测中,我们训练好的模型都是直接通过控制台或者 Jupyter Notebook 来进行预测和交互的,在一个系统或者项目中使用这种方式显然不可能,那在 Web 应用中如何使用我们训练好的模型呢?本文将通过以下四个方面对该问题进行讲解:

  1. 微服务架构简介;
  2. 模型的持久化与加载方式;
  3. Flask 和 Bottle 微服务框架;
  4. Tensorflow Serving 模型部署和服务。

微服务架构简介

微服务是指开发一个单个小型的但有业务功能的服务,每个服务都有自己的处理和轻量通讯机制,可以部署在单个或多个服务器上。微服务也指一种松耦合的、有一定的有界上下文的面向服务架构。也就是说,如果每个服务都要同时修改,那么它们就不是微服务,因为它们紧耦合在一起;如果你需要掌握一个服务太多的上下文场景使用条件,那么它就是一个有上下文边界的服务,这个定义来自 DDD 领域驱动设计。

相对于单体架构和 SOA,它的主要特点是组件化、松耦合、自治、去中心化,体现在以下几个方面:

  1. 一组小的服务:服务粒度要小,而每个服务是针对一个单一职责的业务能力的封装,专注做好一件事情;

  2. 独立部署运行和扩展:每个服务能够独立被部署并运行在一个进程内。这种运行和部署方式能够赋予系统灵活的代码组织方式和发布节奏,使得快速交付和应对变化成为可能。

  3. 独立开发和演化:技术选型灵活,不受遗留系统技术约束。合适的业务问题选择合适的技术可以独立演化。服务与服务之间采取与语言无关的 API 进行集成。相对单体架构,微服务架构是更面向业务创新的一种架构模式。

  4. 独立

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/不正经/article/detail/195172
推荐阅读
相关标签
  

闽ICP备14008679号