当前位置:   article > 正文

【联邦学习FATE框架实战】(三)MNIST神经网络(Keras)_fate与pytorch版本

fate与pytorch版本

目录

1. 环境

  • 本文实验内容是前几篇文章的延续,同样在FATE1.6.0版本下进行。
  • 实际开发和研究过程中,总是需要自定义实现模型的,这里查看了一下FATE1.6.0带的版本
    • FATE1.6.0
      • Python 3.6.5
      • pytorch 1.4.0
      • tensorflow 2.3.4
      • keras 2.4.0

2. 获取数据集

  • 本文使用的数据集是AI入门的手写数字识别数据集MNIST,从kaggle上下载csv格式的数据集,拷贝到虚拟机中
  • 该数据集中6w条训练数据和1w条测试数据
    • 为了模拟横向联邦学习,将训练数据对半切分为mnist_1_train.csv和mnist_2_train.csv

    • FATE训练时需要数据集有id,为数据集增加id字段,并将label字段修改为y

      import pandas as pd
      train = pd.read_csv("data/mnist_train.csv")
      test = pd.read_csv("data/mnist_test.csv")
      
      # 为训练数据增加id字段
      train['idx'] = range(train.shape[0])
      idx = train['idx']
      train.drop(labels=['idx'], axis=1, inplace=True)
      train.insert(0, 'idx', idx)
      # 修改数据集的label字段为y
      train = train.rename(columns={"label":"y"})
      y = train["y"]
      train.drop(labels=["y"], axis=1, inplace=True)
      train.insert(train.shape[1], "y", y)
      
      train = train.sample(frac=1) # 打乱数据集
      
      # 切分训练集
      train_1 = train.iloc[:30000]
      train_2 = train.iloc[30000:]
      train_1.to_csv("data/mnist_1_train.csv", index=False, header=True)
      train_2.to_csv("data/mnist_2_train.csv", index=False, header=True)
      
      # 为测试数据集做相同处理
      test['idx'] = range(test.shape[0])
      idx_test = test['idx']
      test.drop(labels=['idx'], axis=1, inplace=True)
      test.insert(0, 'idx', idx)
      test = test.rename(columns={"label":"y"})
      y_test = test["y"]
      test.drop(labels=["y"], axis=1, inplace=True)
      test.insert(test.shape[1], "y", y_test)
      
      test.to_csv("mnist_test.csv", index=False, header=True)
      
      • 1
      • 2
      • 3
      • 4
      • 5
      • 6
      • 7
      • 8
      • 9
      • 10
      • 11
      • 12
      • 13
      • 14
      • 15
      • 16
      • 17
      • 18
      • 19
      • 20
      • 21
      • 22
      • 23
      • 24
      • 25
      • 26
      • 27
      • 28
      • 29
      • 30
      • 31
      • 32
      • 33
      • 34

3. FATE任务

3.1 上传数据

  • 配置conf文件

    {
    “file”: “workspace/HFL_nn/data/mnist_2_train.csv”,
    “table_name”: “homo_guest_mnist_train”,
    “namespace”: “experiment”,
    “head”: 1,
    “partition”: 8,
    “work_mode”: 0,
    “backend”: 0
    }

    {
    “file”: “workspace/HFL_nn/data/mnist_1_train.csv”,
    “table_name”: “homo_host_mnist_train”,
    “namespace”: “experiment”,
    “head”: 1,
    “partition”: 8,
    “work_mode”: 0,
    “backend”: 0
    }

  • 上传数据

    workspace/HFL_lr/ 是我建立在fate根目录下的目录
    $ flow data upload -c workspace/HFL_nn/upload_train_host_conf.json
    $ flow data upload -c workspace/HFL_nn/upload_train_guest_conf.json

3.2 模型训练

3.2.1 定义模型

  • 这里采用keras定义全连接神经网络

    import tensorflow as tf
    from tensorflow import keras
    from tensorflow.keras import layers

    定义model

    model_nn = tf.keras.Sequential()
    model_nn.add(layers.Dense(512, activation=‘relu’, input_shape=(784,)))
    model_nn.add(layers.Dense(256, activation=‘relu’))
    model_nn.add(layers.Dense(10, activation=‘softmax’))

    print(model_nn.to_json()) # 打印模型

在这里插入图片描述

3.2.2 配置DSL文件(v2版本)

  • 示例文件在/examples/dsl/v2/homo_nn/test_homo_dnn_single_layer_dsl.json,直接拿来使用

    {
    “components”: {
    “reader_0”: {
    “module”: “Reader”,
    “output”: {
    “data”: [“data”]
    }
    },
    “dataio_0”: {
    “module”: “DataIO”,
    “input”: {
    “data”: {
    “data”: [“reader_0.data”]
    }
    },
    “output”: {
    “data”: [“data”],
    “model”: [“model”]
    }
    },
    “homo_nn_0”: {
    “module”: “HomoNN”,
    “input”: {
    “data”: {
    “train_data”: [“dataio_0.data”]
    }
    },
    “output”: {
    “data”: [“data”],
    “model”: [“model”]
    }
    }
    }
    }

3.2.3 配置conf文件

  • 示例文件在/examples/dsl/v2/homo_nn/test_homo_dnn_single_layer_conf.json

  • 修改

    • 根据自身情况,修改各个角色的party_id
    • job_parameters.common中, work_mode(0为单机,1为集群)
    • 修改component_parameters.roles各个数据源,对应上传数据时定义的name和namespace
    • 将在3.2.1中定义的模型拷贝到nn_define项
    • 在homo_nn_0中增加"encode_label":true,表示使用one-hot
    • 修改loss为categorical_crossentropy
    • 调参

    {
    “dsl_version”: 2,
    “initiator”: {
    “role”: “guest”,
    “party_id”: 10000
    },
    “role”: {
    “arbiter”: [10000],
    “host”: [10000],
    “guest”: [10000]
    },
    “job_parameters”: {
    “common”: {
    “work_mode”: 0,
    “backend”: 0
    }
    },
    “component_parameters”: {
    “common”: {
    “dataio_0”: {
    “with_label”: true
    },
    “homo_nn_0”: {
    “encode_label”:true,
    “max_iter”: 20,
    “batch_size”: -1,
    “early_stop”: {
    “early_stop”: “diff”,
    “eps”: 0.0001
    },
    “optimizer”: {
    “learning_rate”: 0.0015,
    “decay”: 0.0,
    “beta_1”: 0.9,
    “beta_2”: 0.999,
    “epsilon”: 1e-07,
    “amsgrad”: false,
    “optimizer”: “Adam”
    },
    “loss”: “categorical_crossentropy”,
    “metrics”: [“accuracy”, “AUC”],
    “nn_define”: {“class_name”: “Sequential”, “config”: {“name”: “sequential”, “layers”: [{“class_name”: “InputLayer”, “config”: {“batch_input_shape”: [null, 784], “dtype”: “float32”, “sparse”: false, “ragged”: false, “name”: “dense_input”}}, {“class_name”: “Dense”, “config”: {“name”: “dense”, “trainable”: true, “batch_input_shape”: [null, 784], “dtype”: “float32”, “units”: 512, “activation”: “relu”, “use_bias”: true, “kernel_initializer”: {“class_name”: “GlorotUniform”, “config”: {“seed”: null}}, “bias_initializer”: {“class_name”: “Zeros”, “config”: {}}, “kernel_regularizer”: null, “bias_regularizer”: null, “activity_regularizer”: null, “kernel_constraint”: null, “bias_constraint”: null}}, {“class_name”: “Dense”, “config”: {“name”: “dense_1”, “trainable”: true, “dtype”: “float32”, “units”: 256, “activation”: “relu”, “use_bias”: true, “kernel_initializer”: {“class_name”: “GlorotUniform”, “config”: {“seed”: null}}, “bias_initializer”: {“class_name”: “Zeros”, “config”: {}}, “kernel_regularizer”: null, “bias_regularizer”: null, “activity_regularizer”: null, “kernel_constraint”: null, “bias_constraint”: null}}, {“class_name”: “Dense”, “config”: {“name”: “dense_2”, “trainable”: true, “dtype”: “float32”, “units”: 10, “activation”: “softmax”, “use_bias”: true, “kernel_initializer”: {“class_name”: “GlorotUniform”, “config”: {“seed”: null}}, “bias_initializer”: {“class_name”: “Zeros”, “config”: {}}, “kernel_regularizer”: null, “bias_regularizer”: null, “activity_regularizer”: null, “kernel_constraint”: null, “bias_constraint”: null}}]}, “keras_version”: “2.4.0”, “backend”: “tensorflow”},
    “config_type”: “keras”
    }
    },
    “role”: {
    “host”: {
    “0”: {
    “reader_0”: {
    “table”: {
    “name”: “homo_host_mnist_train”,
    “namespace”: “experiment”
    }
    },
    “dataio_0”: {
    “with_label”: true
    }
    }
    },
    “guest”: {
    “0”: {
    “reader_0”: {
    “table”: {
    “name”: “homo_guest_mnist_train”,
    “namespace”: “experiment”
    }
    },
    “dataio_0”: {
    “with_label”: true,
    “output_format”: “dense”
    }
    }
    }
    }
    }
    }

3.2.4 提交任务,训练模型

$ flow job submit -c workspace/HFL_nn/test_homo_dnn_single_layer_conf.json -d workspace/HFL_nn/test_homo_dnn_single_layer_dsl.json 
  • 1

在这里插入图片描述
在这里插入图片描述

  • 查看日志,可以看到模型的训练过程,若出现过早停止,调整参数后重新训练
    在这里插入图片描述
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/不正经/article/detail/239289
推荐阅读
相关标签
  

闽ICP备14008679号