赞
踩
library(stats)
library(survival)
## Information of data
data(package = "survival")
# List datasets in survival package
help(bladder1) #
Description of data
head(bladder1) # Show
first 6 rows
str(bladder1) # Check
type of variables
summary(bladder1) # Statistical summary
## Get the final data with nonzero
follow-up
bladder1$time
as.numeric(bladder1$stop -
bladder1$start)
summary(bladder1$time)
bladder1
subset(bladder1,status<=1 & time>0)
## Step1 Create Kaplan-Meier curve and
estimate median survial/event time
## The "log-log" confidence interval is
preferred.
## Create overval Kaplan-Meier
curve
km.as.one
status) ~ 1, data = bladder1,
conf.type =
"log-log")
## Create Kaplan-Meier curve stratified
by treatment
km.by.trt
status) ~ treatment, data =
bladder1,
conf.type =
"log-log")
## Show simple statistics of Kaplan-Meier
curve
km.as.one
km.by.trt
## See survival estimates at given time
(lots of outputs)
summary(km.as.one)
summary(km.by.trt)
## Plot Kaplan-Meier curve without any
specification
plot(km.as.one)
plot(km.by.trt)
## Plot Kaplan-Meier curve Without
confidence interval and mark of event
plot(km.as.one, conf = F, mark.time =
F)
plot(km.by.trt, conf = F, mark.time =
F)
## step2 Create a simple cox regression
and estimate HR:
model1
treatment + number +size,
data=bladder1)
## Model output
summary(model1) # Output
summary information
confint(model1) # Output
95% CI for the coefficients
exp(coef(model1)) # Output HR (exponentiated
coefficients)
exp(confint(model1)) # 95% CI
for exponentiated coefficients
predict(model1, type="risk")
#
predicted values
residuals(model1, type="deviance") #
residuals
## Step3 Check for violation of
proportional hazard (constant HR over time)
model1.zph
cox.zph(model1)
model1.zph
## Note: p value of treatmentthiotepa
<0.05
## GLOBAL p value is more impo
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。