当前位置:   article > 正文

OpenVINO~C+部署YOLO5-Seg_yolov5s-seg

yolov5s-seg

YOLOv5兼具速度和精度,工程化做的特别好,Git clone到本地即可在自己的数据集上实现目标检测任务的训练和推理,在产业界中应用广泛。本文主要介绍在C++中使用OpenVINO工具包部署YOLOv5-Seg模型的主要步骤。另外开源社区对YOLOv5支持实例分割的呼声高涨,YOLOv5在v7.0中正式官宣支持实例分割。

本文主要介绍在C++中使用OpenVINO工具包部署YOLOv5-Seg模型,主要步骤有:

  1. 配置OpenVINO C++开发环境

  2. 下载并转换YOLOv5-Seg预训练模型

  3. 使用OpenVINO Runtime C++ API编写推理程序

下面,本文将依次详述

1.1 配置OpenVINO C++开发环境

配置OpenVINO C++开发环境的详细步骤,请参考之前文章

1.2 下载并转换YOLOv5预训练模型

下载并转换YOLOv5-seg预训练模型的详细步骤,请参考:https://mp.weixin.qq.com/s/K3wP5YLAU4p5jsdiMYjuMg,本文所使用的OpenVINO是2022.3 LTS版。

首先,运行命令获得 yolov5s-seg ONNX 格式模型:yolov5s-seg.onnx:

python export.py --weights yolov5s-seg.pt --include onnx

然后运行命令获得yolov5s-seg IR格式模型:yolov5s-seg.xml和yolov5s-seg.bin,如下图所示

mo -m yolov5s-seg.onnx --compress_to_fp16

图 1-1  yolov5-seg ONNX格式和IR格式模型

1.3 使用OpenVINO Runtime C++ API编写推理程序

一个端到端的AI推理程序,主要包含五个典型的处理流程:

  1. 采集图像&图像解码

  2. 图像数据预处理

  3. AI推理计算

  4. 对推理结果进行后处理

  5. 将处理后的结果集成到业务流程

图 1-2  端到端的AI推理程序处理流程

1.3.1 采集图像&图像解码

OpenCV提供imread()函数将图像文件载入内存,

Mat cv::imread (const String &filename, int flags=IMREAD_COLOR)

若是从视频流(例如,视频文件、网络摄像头、3D摄像头(Realsense)等)中,一帧一帧读取图像数据到内存,则使用cv::VideoCapture类,对应范例代码请参考OpenCV官方范例代码:https://github.com/opencv/opencv/tree/4.x/samples/cpp。

图 1-3 从视频流读取图像帧范例

1.3.2 YOLOv5-Seg模型的图像预处理

YOLOv5-Seg模型构架是在YOLOv5模型构架基础上,增加了一个叫“Proto”的小型卷积神经网络,用于输出检测对象掩码(Mask),如下图所示:

图 1-4  YOLOv5-Seg模型输出的代码定义

详细参看:https://github.com/ultralytics/yolov5/blob/master/models/yolo.py#L92

由此可知,YOLOv5-Seg模型对数据预处理的要求跟YOLOv5模型一模一样,YOLOv5-Seg模型的预处理代码可以复用YOLOv5模型的C++预处理代码。

另外,从代码可以看出YOLOv5-Seg模型的输出有两个张量,一个张量输出检测结果,一个张量输出proto,其形状可以用Netron打开yolov5-seg.onnx查知,如下图所示。

图 1-5  YOLOv5-Seg模型的输入和输出

“output0”是检测输出,第一个维度表示batch size,第二个维度表示25200条输出,第三个维度表示有117个字段,其中前85个字段(0~84)表示:cx、cy、w、h、confidence和80个类别分数,后32个字段与”output1”做矩阵乘法,可以获得尺寸为160x160的检测目标的掩码(mask),如下图所示。

图 1-6  检测目标的掩码

1.3.3 执行AI推理计算

基于OpenVINO Runtime C++ API实现AI推理计算主要有两种方式:一种是同步推理方式,一种是异步推理方式,本文主要介绍同步推理方式。

主要步骤有:

  1. 初始化Core类:ov::Core core;

  2. 编译模型:core.compile_model()

  3. 创建推理请求infer_request:compiled_model.create_infer_request()

  4. 读取图像数据并做预处理:letterbox()

  5. 将预处理后的blob数据传入模型输入节点:infer_request.set_input_tensor()

  6. 调用infer()方法执行推理计算:infer_request.infer()

  7. 获得推理结果:infer_request.get_output_tensor()

基于OpenVINO Runtime C++API的同步推理代码如下所示:

  1.     // -------- Step 1Initialize OpenVINO Runtime Core --------
  2.     ov::Core core;
  3.     // -------- Step 2. Compile the Model --------
  4.     auto compiled_model = core.compile_model(model_file"GPU.1"); //GPU.1 is dGPU A770
  5.     // -------- Step 3. Create an Inference Request --------
  6.     ov::InferRequest infer_request = compiled_model.create_infer_request();
  7.     // -------- Step 4Read a picture file and do the preprocess --------
  8.     cv::Mat img = cv::imread(image_file); //Load a picture into memory
  9.     std::vector<float> paddings(3);       //scale, half_h, half_w
  10.     cv::Mat resized_img = letterbox(img, paddings); //resize to (640,640by letterbox
  11.     // BGR->RGB, u8(0-255)->f32(0.0-1.0), HWC->NCHW
  12.     cv::Mat blob = cv::dnn::blobFromImage(resized_img, 1 / 255.0, cv::Size(640640), cv::Scalar(000), true);
  13.     // -------- Step 5. Feed the blob into the input node of YOLOv5 -------
  14.     // Get input port for model with one input
  15.     auto input_port = compiled_model.input();
  16.     // Create tensor from external memory
  17.     ov::Tensor input_tensor(input_port.get_element_type(), input_port.get_shape(), blob.ptr(0));
  18.     // Set input tensor for model with one input
  19.     infer_request.set_input_tensor(input_tensor);
  20.     // -------- Step 6Start inference --------
  21.     infer_request.infer();
  22.     // -------- Step 7Get the inference result --------
  23.     auto detect = infer_request.get_output_tensor(0);
  24.     auto detect_shape = detect.get_shape();
  25.     std::cout << "The shape of Detection tensor:"<< detect_shape << std::endl;
  26.     auto proto = infer_request.get_output_tensor(1);
  27.     auto proto_shape = proto.get_shape();
  28. std::cout << "The shape of Proto tensor:" << proto_shape << std::endl;

1.3.4 推理结果进行后处理

后处理工作主要是从”detect ”输出张量中拆解出检测框的位置和类别信息,并用cv::dnn::NMSBoxes()过滤掉多于的检测框;从”detect ”输出张量的后32个字段与”proto”输出张量做矩阵乘法,获得每个检测目标的形状为160x160的掩码输出,最后将160x160的掩码映射回原始图像完成所有后处理工作。 whaosoft aiot http://143ai.com  

完整的代码实现,请下载:https://gitee.com/ppov-nuc/yolov5_infer/blob/main/yolov5seg_openvino_dGPU.cpp

1.4 总结

配置OpenVINO C++开发环境后,可以直接编译运行yolov5seg_openvino_dGPU.cpp,结果如下图所示。使用OpenVINO Runtime C++ API函数开发YOLOv5推理程序,简单方便,并可以任意部署在英特尔CPU、集成显卡和独立显卡上。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/不正经/article/detail/275796
推荐阅读
相关标签
  

闽ICP备14008679号