当前位置:   article > 正文

对话系统-“任务型”多轮对话(二):对话状态追踪(DST)【基于规则;基于模型】【输入:当前意图和槽值对+历史槽值对;输出:State(槽值对集合)或State Vector 】【为DP做数据准备】_基于规则的对话状态跟踪

基于规则的对话状态跟踪

在任务型的对话系统中,对话状态跟踪(DST)的目标是从对话历史中监控对话的状态。

DST的输入:Intent+Slot+History;输出:State或State Vector

DST中的State用一组Slot-Value键值对表示;

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

一、基于规则的DST

二、基于模型的DST

At a high level, given a dialog context and a candidate slot- value pair, our model outputs a score indicating the relevance of the candidate.

In other words, the approach is similar to a sentence pair classification task.

  • The first input corresponds to the dialog context, and it consists of the system utterance from the previous turn and the user utterance from the cur- rent turn. The two utterances are separated by a [SEP] token.
  • The second input is the candidate slot-value pair. We simply represent the candidate pair as a sequence of tokens (words or pieces of words).

At each turn, the proposed BERT-based model is used to estimate the probability score of every candidate slot-value pair.After that, only pairs with predicted probability equal to at least 0.5 are chosen as the final prediction for the turn.
在这里插入图片描述
在这里插入图片描述

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/不正经/article/detail/378941
推荐阅读
相关标签
  

闽ICP备14008679号