赞
踩
针对源代码本身,采用N-gram模型等统计学习方法提取代码的局部语法特征和上下文信息。N-gram模型通过对源代码中连续N个词语的组合出现频率进行统计分析,可捕捉到代码片段之间的结构相似性及特定模式,有助于发现常见的编程错误或安全隐患。然而,仅依赖词频统计和N-gram模型在漏洞挖掘时存在局限性,由于其无法深入理解和建模代码的复杂语义关系,可能导致过度简化了源代码的内在逻辑,同时引入大量噪声数据,降低了漏洞检测模型的有效性和准确性。
为了弥补上述不足,近年来研究人员开始将Word2Vec等新型语义模型引入漏洞挖掘领域。Word2Vec通过训练一个神经网络模型将单词映射至高维向量空间,使得语义相近的词汇在该空间内距离较近,实现了从词频统计向语义相似度计算的转变。这种技术在自然语言处理任务中表现卓越,同样为源代码分析带来了新机遇。比如,在代码相似性比较中,通过计算不同函数或变量名对应的向量之间的余弦相似度,可以有效地识别出代码结构的相似部分,进而辅助定位可能存在的重复漏洞或未被修复的安全问题。因此,将Word2Vec等高级语义模型应用于漏洞挖掘模型,有望提升对源代码深层次语义信息的理解能力和漏洞检测的精确性。
在自动化漏洞挖掘和安全分析领域中,机器学习与传统的程序分析技术相结合,能够显著提升效率并降低误报率。下面详细阐述这种结合方式的几个关键点:
总之,将机器学习技术整合到传统程序分析工具中,可以克服单一方法的局限性,实现更为精确和高效的漏洞检测和挖掘,有力推动了软件安全领域的研究与发展。
基于深度学习在诸如图像识别、自然语言处理以及恶意软件检测等复杂领域中所展现出的卓越性能,相较于传统的“浅层”机器学习方法,其能够通过多层次抽象和非线性特征组合以捕捉更为精细和深层次的模式。这一显著优势激发了诸多安全研究学者尝试将深度学习技术迁移至漏洞挖掘领域的热情。在此背景下,深度学习在漏洞挖掘中的应用主要体现在两个相互关联但各有侧重的方向:
深度学习在漏洞挖掘领域的应用是一个充满机遇但也富有挑战的研究方向。通过持续探索与实践,我们期望能够开发出更为智能且高效的漏洞检测工具,进一步推动软件安全研究的进步。
跨项目漏洞挖掘是一种复杂而具有挑战性的安全实践,它旨在构建能够在不同软件项目之间迁移和应用的通用漏洞检测模型。在现实世界中,由于新项目的启动频繁且资源有限,尤其是训练数据不足的问题,使得针对这些新项目的针对性漏洞挖掘变得尤为困难。因此,通过研究和借鉴已知漏洞模式以及成功的漏洞挖掘技术,在一个项目上建立的有效漏洞挖掘模型有望应用于另一个具有相似或相关特征的项目上,从而提高安全性评估和漏洞发现的效率。
然而,跨项目漏洞挖掘面临诸多实质性难题。首先,各个项目之间的差异性是阻碍有效迁移的主要障碍,这包括但不限于不同的开发流程、项目所处的应用领域、使用的编程语言,以及开发者的技术水平和编码习惯等因素。例如,一个使用Python编写的Web应用程序可能采用的输入验证机制与一个用Java编写的后台服务系统大相径庭,这就要求漏洞挖掘模型能够适应和理解各种代码结构和编程范式。
当前的跨项目漏洞挖掘通常局限于对同一种编程语言的不同项目进行分析,尚未充分解决跨多种编程语言的漏洞挖掘问题。实现跨语言漏洞挖掘的关键在于设计一套能够将不同编程语言的语义和逻辑结构映射到统一表示空间的方法。比如,通过对函数定义、变量声明等底层抽象语法树(AST)结构进行转换和解析,形成可以跨越语言边界的通用漏洞模式描述。这一过程需要深入理解各编程语言的特性和内在规律,并构建相应的语义转换模型。
此外,不同项目因应用领域的特殊性所带来的安全需求差异也不容忽视。以加密算法为例,在一般商业项目中常用的加密方案可能无法满足金融行业特别是银行系统对于高强度加密等级的要求。这种情况下,跨项目漏洞挖掘不仅要识别出基础的安全缺陷,还要能精准判断某个加密策略在目标项目环境下的适用性及其潜在风险。
因此,跨项目漏洞挖掘过程中需结合具体业务场景,综合考虑领域知识和安全标准,确保模型能够准确地适应和识别不同领域内的特定漏洞类型和安全威胁。
在安全漏洞挖掘研究中,特征的选择和构造是决定模型性能的关键环节。基于软件度量的漏洞挖掘方法聚焦于开发新型代码属性特征,这些属性可能包括但不限于程序复杂性指标、控制流特性、数据流特性以及模块间的依赖关系等,它们能够反映潜在的安全风险。为了提升此类模型的效果,需要不断探索和完善能够揭示漏洞模式的深层次软件度量特征。
另一方面,基于语法语义特征的漏洞挖掘模型则尝试从源代码或二进制的内在逻辑出发,利用自然语言处理(NLP)技术提取关键语义信息,或者通过深度学习算法对程序进行高层次的抽象表示。例如,可以应用图神经网络捕捉程序结构信息,或是利用词嵌入技术来表征程序语句的语义含义。针对可能出现的高维特征爆炸问题,采用降维技术如主成分分析(PCA)、自编码器(Autoencoder)等有助于优化模型并提高其泛化能力。
深度学习模型作为现代机器学习的核心工具,在安全漏洞研究领域尚处于初步应用阶段。将深度学习应用于漏洞挖掘时,首要任务是如何有效地将复杂的程序结构和语义信息转化为深度模型可理解的向量化输入。此外,不同粒度级别的检测对于精准定位漏洞位置至关重要,细粒度的漏洞挖掘模型需具备识别具体代码片段的能力,这对模型的设计提出了更高的要求。
面对众多深度学习算法选项,诸如卷积神经网络(CNN)、长短时记忆网络(LSTM)、Transformer等,如何针对特定类型的漏洞选取最合适的模型架构和特征空间,并确保模型能够在不同场景下稳定高效地挖掘出未知漏洞,是当前研究的一大难点。同时,深度学习在漏洞利用、评估与修复等更广泛的议题上同样面临诸多待解决的问题。
跨项目漏洞挖掘是安全领域的一个重要课题,但由于编程语言差异、应用领域多样性等因素导致这一任务极具挑战性。迁移学习作为一种有潜力的方法,旨在通过学习一个项目的知识并迁移到其他项目以改善漏洞检测效果。然而,如何克服跨语言和跨领域的障碍,使得迁移学习能在漏洞挖掘中发挥有效作用,仍是亟待突破的研究瓶颈。
自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。
深知大多数网络安全工程师,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年网络安全全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上网络安全知识点,真正体系化!
由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新
如果你觉得这些内容对你有帮助,可以添加VX:vip204888 (备注网络安全获取)
网安所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
最后就是大家最关心的网络安全面试题板块
一个人可以走的很快,但一群人才能走的更远。不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎扫码加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
ab1fd4edc800d7db3eabb956e.png)
一个人可以走的很快,但一群人才能走的更远。不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎扫码加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
[外链图片转存中…(img-8Z6ucNkB-1712637982361)]
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。