赞
踩
按照早期的数据库理论,比较流行的数据库模型有三种,分别为层次式数据库、网状数据库和关系型数据库。而在当今的互联网中,最常见的数据库模型主要是两种,即SQL关系型数据库和NoSQL非关系型数据库。
关系型数据库,是指采用了关系模型来组织数据的数据库,其以行和列的形式存储数据,以便于用户理解,关系型数据库这一系列的行和列被称为表,一组表组成了数据库。用户通过查询来检索数据库中的数据,而查询是一个用于限定数据库中某些区域的执行代码。关系模型可以简单理解为二维表格模型,而一个关系型数据库就是由二维表及其之间的关系组成的一个数据组。
数据定义语言(DDL):Data Defintion Language
· 用于建立、修改、删除数据对象;
· 包括:
- CREATE:创建表或其他对象结构;
- ALTER:修改表或其他对象的结构;
- DROP:删除表或其他对象结构;
- TRUNCATE:删除表数据,保留表结构;
数据操作语言(DML):Data Manipulation Language
· 用于改变数据表中的数据;
· 和事务相关,执行完成后需要经过事务控制语句提交后才真正的将改变应 用到数据库中;
· 包括:
- INSERT:将数据插入到数据库中;
- UPDATE:更新数据表中已存在的数据;
- DELETE:删除数据表中的数据;
数据查询语句(DQL): Data Query Language
· 用来查询所需要的数据;
· SELECT语句;
数据控制语言(DCL):Data Control Language
· 用于执行权限的授予和回收操作;
· 包括:
- GRANT:授予,用于给用户或角色授予权限;
- REVOKE:用于回收用户或角色已有的权限;
- CREATE USER:创建用户;
3.3.6 数据操作语言(DML):Data Manipulation Language;
3.3.7 事务控制语言(TCL): Transaction Control Language;
事务控制语言(TCL): Transaction Control Language
· 用来维护数据一致性的语句
· 包括:
- COMMIT:提交,确认已经进行的数据改变;
- ROLLBACK:回滚,取消已经进行的数据改变;
- SAVEPOINT:保存点,使当前事务可以回退到指定的保存点,便于取消 部分改变;
3.4 ACID事务
先来一下排名,此排名截至到2020年10月
如果需要关注实时排名可以关注:https://db-engines.com/en/ranking
4.Oracle19c和20c的新特性:https://www.modb.pro/doc/1291?leiZH
如果你工作在一个高度量身定制的解决方案上,MySQL能够很容易地尾随和执行你的规则,这要感谢其丰富的配置设置和操作模式。
PostgreSQL是一个自由的对象-关系数据库服务器(数据库管理系统),支持大部分 SQL标准并且提供了许多其他现代特性:复杂查询、外键、触发器、视图、事务完整性、MVCC。同样,PostgreSQL 可以用许多方法扩展,比如, 通过增加新的数据类型、函数、操作符、聚集函数、索引。免费使用、修改、和分发 PostgreSQL。
SQLite,是一款轻型的数据库,是遵守ACID的关系型数据库管理系统,它包含在一个相对小的C库中。它是D.RichardHipp建立的公有领域项目。它的设计目标是嵌入式的,而且已经在很多嵌入式产品中使用了它,它占用资源非常的低,在嵌入式设备中,可能只需要几百K的内存就够了。它能够支持Windows/Linux/Unix等等主流的操作系统,同时能够跟很多程序语言相结合,比如 Tcl、C#、PHP、Java等,还有ODBC接口,同样比起Mysql、PostgreSQL这两款开源的世界著名数据库管理系统来讲,它的处理速度比他们都快。SQLite第一个Alpha版本诞生于2000年5月。 至2019年已经有19个年头,SQLite也迎来了一个版本 SQLite 3已经发布。
从数据结构上来看关系型数据库就是列表、集合。
如:所有人的基本信息[UserInfo]
id | name | age | sex |
---|---|---|---|
1 | 张三 | 16 | 男 |
2 | 李四 | 17 | 男 |
3 | 王五 | 18 | 男 |
4 | 赵六 | 19 | 男 |
通过以上的简单的结构固化的存储在关系型数据库中,当需要使用时使用,如需要查询年龄在17岁以上人的信息时.
select * from UserInfo where age>17
查询结果为:
id | name | age | sex |
---|---|---|---|
3 | 王五 | 18 | 男 |
4 | 赵六 | 19 | 男 |
基于以上的基本功能逐步演变有:
这个时候就出现如下几个方面的数据库开始在各自的业务场景下搔首弄姿
HBase是一个分布式的、面向列的开源数据库,该技术来源于 Fay Chang 所撰写的Google论文“Bigtable:一个结构化数据的分布式存储系统”。就像Bigtable利用了Google文件系统(File System)所提供的分布式数据存储一样,HBase在Hadoop之上提供了类似于Bigtable的能力。HBase是Apache的Hadoop项目的子项目。HBase不同于一般的关系数据库,它是一个适合于非结构化数据存储的数据库。另一个不同的是HBase基于列的而不是基于行的模式。
Hbase是一种NoSQL数据库,这意味着它不像传统的RDBMS数据库那样支持SQL作为查询语言。Hbase是一种分布式存储的数据库,技术上来讲,它更像是分布式存储而不是分布式数据库,它缺少很多RDBMS系统的特性,比如列类型,辅助索引,触发器,和高级查询语言等待。那Hbase有什么特性呢?如下:
首先数据库量要足够多,如果有十亿及百亿行数据,那么Hbase是一个很好的选项,如果只有几百万行甚至不到的数据量,RDBMS是一个很好的选择。因为数据量小的话,真正能工作的机器量少,剩余的机器都处于空闲的状态
其次,如果你不需要辅助索引,静态类型的列,事务等特性,一个已经用RDBMS的系统想要切换到Hbase,则需要重新设计系统。
最后,保证硬件资源足够,每个HDFS集群在少于5个节点的时候,都不能表现的很好。因为HDFS默认的复制数量是3,再加上一个NameNode。
Hbase在单机环境也能运行,但是请在开发环境的时候使用。
Redis 是一个开源的使用ANSI C语言编写、支持网络、可基于内存亦可持久化的日志型、Key-Value数据库,并提供多种语言的API。目前由VMware主持开发工作。
Redis 通常被称为数据结构服务器,因为值(value)可以是 字符串(String), 哈希(Hash/Map), 列表(list), 集合(sets) 和 有序集合(sorted sets)五种类型,操作非常方便。比如,如果你在做好友系统,查看自己的好友关系,如果采用其他的key-value系统,则必须把对应的好友拼接成字符串,然后在提取好友时,再把value进行解析,而redis则相对简单,直接支持list的存储(采用双向链表或者压缩链表的存储方式)。
⑴ String
string 是 Redis 最基本的类型,你可以理解成与 Memcached 一模一样的类型,一个key对应一个value。
string 类型是二进制安全的。意思是 Redis 的 string 可以包含任何数据。比如 jpg 图片或者序列化的对象 。
string 类型是 Redis 最基本的数据类型,一个键最大能存储512MB。
⑵ Hash
Redis hash 是一个键值对集合。
Redis hash 是一个 string 类型的 field 和 value 的映射表,hash 特别适合用于存储对象。
⑶ List
Redis 列表是简单的字符串列表,按照插入顺序排序。你可以添加一个元素导列表的头部(左边)或者尾部(右边)。
⑷ Sets
Redis的Set是string类型的无序集合。 集合是通过哈希表实现的,所以添加,删除,查找的复杂度都是O(1)。
⑸ sorted sets/zset
Redis zset 和 set 一样也是string类型元素的集合,且不允许重复的成员。 不同的是每个元素都会关联一个double类型的分数。redis正是通过分数来为集合中的成员进行从小到大的排序。
性能
Redis数据库完全在内存中,因此处理速度非常快,每秒能执行约11万集合,每秒约81000+条记录(测试数据的可参考这篇《Redis千万级的数据量的性能测试》)。
Redis的数据能确保一致性——所有Redis操作是原子性(Atomicity,意味着操作的不可再分,要么执行要么不执行)的,这保证了如果两个客户端同时访问的Redis服务器将获得更新后的值。
持久化
通过定时快照(snapshot)和基于语句的追加(AppendOnlyFile,aof)两种方式,redis可以支持数据持久化——将内存中的数据存储到磁盘上,方便在宕机等突发情况下快速恢复。
CAP类别
属于CP类型(了解更多)。
Node下的使用
node 下可使用 node_redis 来实现 redis 客户端操作:
适用于数据变化快且数据库大小可遇见(适合内存容量)的应用程序。更具体的可参照这篇《Redis 的 5 个常见使用场景》译文。
在这篇文章中,我们将阐述 Redis 最常用的使用场景,以及那些影响我们选择的不同特性。 1、会话缓存(Session Cache) 最常用的一种使用Redis的情景是会话缓存(session cache)。用Redis缓存会话比其他存储(如Memcached)的优势在于:Redis提供持久化。当维护一个不是严格要求一致性的缓存时,如果用户的购物车信息全部丢失,大部分人都会不高兴的,现在,他们还会这样吗? 幸运的是,随着 Redis 这些年的改进,很容易找到怎么恰当的使用Redis来缓存会话的文档。甚至广为人知的商业平台Magento也提供Redis的插件。 2、全页缓存(FPC) 除基本的会话token之外,Redis还提供很简便的FPC平台。回到一致性问题,即使重启了Redis实例,因为有磁盘的持久化,用户也不会看到页面加载速度的下降,这是一个极大改进,类似PHP本地FPC。 再次以Magento为例,Magento提供一个插件来使用Redis作为 全页缓存后端。 此外,对WordPress的用户来说,Pantheon有一个非常好的插件 wp-redis,这个插件能帮助你以最快速度加载你曾浏览过的页面。 3、队列 Reids在内存存储引擎领域的一大优点是提供 list 和 set 操作,这使得Redis能作为一个很好的消息队列平台来使用。Redis作为队列使用的操作,就类似于本地程序语言(如Python)对 list 的 push/pop 操作。 如果你快速的在Google中搜索“Redis queues”,你马上就能找到大量的开源项目,这些项目的目的就是利用Redis创建非常好的后端工具,以满足各种队列需求。例如,Celery有一个后台就是使用Redis作为broker,你可以从 这里去查看。 4、排行榜/计数器 Redis在内存中对数字进行递增或递减的操作实现的非常好。集合(Set)和有序集合(Sorted Set)也使得我们在执行这些操作的时候变的非常简单,Redis只是正好提供了这两种数据结构。所以,我们要从排序集合中获取到排名最靠前的10个用户–我们称之为“user_scores”,我们只需要像下面一样执行即可: 当然,这是假定你是根据你用户的分数做递增的排序。如果你想返回用户及用户的分数,你需要这样执行: ZRANGE user_scores 0 10 WITHSCORES Agora Games就是一个很好的例子,用Ruby实现的,它的排行榜就是使用Redis来存储数据的,你可以在 这里看到。 5、发布/订阅 最后(但肯定不是最不重要的)是Redis的发布/订阅功能。发布/订阅的使用场景确实非常多。我已看见人们在社交网络连接中使用,还可作为基于发布/订阅的脚本触发器,甚至用Redis的发布/订阅功能来建立聊天系统!(不,这是真的,你可以去核实)。 Redis提供的所有特性中,我感觉这个是喜欢的人最少的一个,虽然它为用户提供如果此多功能。
MongoDB 是一个高性能,开源,无模式的文档型数据库,开发语言是C++。它在许多场景下可用于替代传统的关系型数据库或键/值存储方式。
数据的插入,查询操作很直观,不用再像之前要考虑各个表之间的关系。
提供的图搜索和图遍历方法很方便,速度也是比较快的。
最不能让人忍受的就是极慢的插入速度。可能是因为创建节点和边的时候需要保存一些额外信息(为了查询服务)。不知道是不是我代码的问题,插入10000个节点,10000条边花了将近10分钟…
超大节点。当有一个节点的边非常多时(常见于大V),有关这个节点的操作的速度将大大下降。这个问题很早就有了,官方也说过会处理,然而现在仍然不能让人满意。
提高数据库速度的常用方法就是多分配内存,然而看了官方操作手册,貌似无法直接设置数据库内存占用量,而是需要计算后为其”预留“内存…
另外,针对Neo4j的缺点,有一款使用混合索引的数据库Arangodb也许是一个不错的考虑对象。根据其官网的说明,Arangodb不仅具有一般图形数据库的优点,而且在各种操作的速度上领先于Neo4j。
https://www.arangodb.com/2016/04/index-free-adjacency-hybrid-indexes-graph-databases/
,10000条边花了将近10分钟…
超大节点。当有一个节点的边非常多时(常见于大V),有关这个节点的操作的速度将大大下降。这个问题很早就有了,官方也说过会处理,然而现在仍然不能让人满意。
提高数据库速度的常用方法就是多分配内存,然而看了官方操作手册,貌似无法直接设置数据库内存占用量,而是需要计算后为其”预留“内存…
另外,针对Neo4j的缺点,有一款使用混合索引的数据库Arangodb也许是一个不错的考虑对象。根据其官网的说明,Arangodb不仅具有一般图形数据库的优点,而且在各种操作的速度上领先于Neo4j。
https://www.arangodb.com/2016/04/index-free-adjacency-hybrid-indexes-graph-databases/
https://www.arangodb.com/2015/10/benchmark-postgresql-mongodb-arangodb/
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。