赞
踩
听闻有人在Twitter上分析股民的情绪来炒股,盈利不少。就来试试看。
具体过程:
一、数据采集
通过采集东方财富上某只股票一段时间内股票的评论,这里以恒生电子为例。我自己编写了爬虫代码。如下:
- import re,requests,codecs,time,random
- from lxml import html
-
-
- #proxies={"http" : "123.53.86.133:61234"}
- proxies=None
- headers = {
- 'Host': 'guba.eastmoney.com',
- 'User-Agent': 'Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/49.0.2623.221 Safari/537.36 SE 2.X MetaSr 1.0'}
- def get_url(page):
- stocknum=600570
- url='http://guba.eastmoney.com/list,'+str(stocknum)+'_'+str(page)+'.html'
- try:
- text=requests.get(url,headers=headers,proxies=proxies,timeout=20)
- requests.adapters.DEFAULT_RETRIES = 5
- s = requests.session()
- s.keep_alive = False
- text=html.fromstring(text.text)
- urls=text.xpath('//div[@id="articlelistnew"]/div[@class="articleh"]/span[3]/a/@href')
- except Exception as e:
- print(e)
- time.sleep(random.random() + random.randint(0, 3))
- urls=''
- return urls
- def get_comments(urls):
- for newurl in urls:
- newurl1='http://guba.eastmoney.com'+newurl
- try:
- text1=requests.get(newurl1,headers=headers,proxies=proxies,timeout=20)
- requests.adapters.DEFAULT_RETRIES = 5
- s = requests.session()
- s.keep_alive = False
- text1=html.fromstring(text1.text)
- times1=text1.xpath('//div[@class="zwli clearfix"]/div[3]/div/div[2]/text()')
- times='!'.join(re.sub(re.compile('发表于| '),'',x)[:10] for x in times1).split('!')
- #times=list(map(lambda x:re.sub(re.compile('发表于| '),'',x)[:10],times))
- comments1=text1.xpath('//div[@class="zwli clearfix"]/div[3]/div/div[3]/text()')
- comments='!'.join(w.strip() for w in comments1).split('!')
- dic=dict(zip(times,comments))
- save_to_file(dic)
- except:
- print('error!!!!')
- time.sleep(random.random()+random.randint(0,3))
- #print(dic)
- #if times and comments:
- #dic.append({'time':times,'comment':comments})
- #return dic
- def save_to_file(dic):
- if dic:
- #dic=dic
- print(dic)
- #df=pd.DataFrame([dic]).T
- #df.to_excel('eastnoney.xlsx')
- for i,j in dic.items():
- output='{}\t{}\n'.format(i,j)
- f=codecs.open('eastmoney.xls','a+','utf-8')
- f.write(output)
- f.close()
-
- for page in range(2,1257):
- print('正在爬取第{}页'.format(page))
- urls=get_url(page)
- dic=get_comments(urls)
我爬取了2017年8月-2018年3月份恒生电子股吧股民个评论,具体如下:
看看大家都在讨论啥,词云的代码可以参考python生成词云,中间一排的绿绿绿绿。看来大家不看好啊。。。。。
接下来是获取对应时间段恒生电子的历史股票数据,我找了很久,终于找了一个不错的接口传送门,直接复制到Excel就可以了。
接下来,用python画出K线图,这部分代码参考了画K线图
- from pandas import DataFrame, Series
- import pandas as pd; import numpy as np
- import matplotlib.pyplot as plt
- from matplotlib import dates as mdates
- from matplotlib import ticker as mticker
- from matplotlib.finance import candlestick_ohlc
- from matplotlib.dates import DateFormatter, WeekdayLocator, DayLocator, MONDAY,YEARLY
- from matplotlib.dates import MonthLocator,MONTHLY
- import datetime
- import pylab
-
- MA1 = 10#移动平均线的日期间隔
- MA2 = 50
- #'股票代码,名称,收盘价,最高价,最低价,开盘价,前收盘,涨跌额,涨跌幅,换手率,成交量,成交金额,总市值,流通市值
- startdate = datetime.date(2017,8,1)
- enddate = datetime.date(2018, 3, 26)
- data=pd.DataFrame(pd.read_excel('eastmoney.xlsx',sheet_name=1,index_col='日期'))#读取数据、设置日期为index
- data=data.sort_index()#按日期升序排列
- #抽取需要的列组成新的表
- stdata=pd.DataFrame({'DateTime':data.index,'Open':data.开盘价,'High':data.最高价,'Close':data.收盘价,'Low':data.最低价})
- stdata['DateTime'] = mdates.date2num(stdata['DateTime'].astype(datetime.date))#把日期转化成天数,从公元0年开始算
- #stdata=stdata.set_index('DateTime')
- #stdata.drop(data.columns[6:],axis=1,inplace=True),stdata['Volume']=data.涨跌幅,del stdata['名称']
-
- def main():
- daysreshape = stdata.reset_index()
- daysreshape = daysreshape.reindex(columns=['DateTime', 'Open', 'High', 'Low', 'Close'])
-
- Av1 = pd.rolling_mean(daysreshape.Close.values, MA1)
- Av2 = pd.rolling_mean(daysreshape.Close.values, MA2)
- SP = len(daysreshape.DateTime.values[MA2 - 1:])
- fig = plt.figure(facecolor='#07000d', figsize=(15, 10))
-
- ax1 = plt.subplot2grid((6, 4), (1, 0), rowspan=4, colspan=4, axisbg='#07000d')
- candlestick_ohlc(ax1, daysreshape.values[-SP:], width=.6, colorup='#ff1717', colordown='#53c156')
- Label1 = str(MA1) + ' SMA'
- Label2 = str(MA2) + ' SMA'
-
- ax1.plot(daysreshape.DateTime.values[-SP:], Av1[-SP:], '#e1edf9', label=Label1, linewidth=1.5)
- ax1.plot(daysreshape.DateTime.values[-SP:], Av2[-SP:], '#4ee6fd', label=Label2, linewidth=1.5)
- ax1.grid(True, color='w')
- ax1.xaxis.set_major_locator(mticker.MaxNLocator(10))
- ax1.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m-%d'))
- ax1.yaxis.label.set_color("w")
- ax1.spines['bottom'].set_color("#5998ff")
- ax1.spines['top'].set_color("#5998ff")
- ax1.spines['left'].set_color("#5998ff")
- ax1.spines['right'].set_color("#5998ff")
- ax1.tick_params(axis='y', colors='w')
- plt.gca().yaxis.set_major_locator(mticker.MaxNLocator(prune='upper'))
- ax1.tick_params(axis='x', colors='w')
- plt.ylabel('Stock price and Volume')
- plt.show()
-
- if __name__ == "__main__":
- main()
看看运行的效果,好像还挺不错的。
接下来,要对爬下来的股票的评论进行情感分析,这里调用百度AI的情感分析。
- import pandas as pd
- import datetime
- from aip import AipNlp
- import codecs
-
- startdate = datetime.date(2017, 8, 1).strftime('%Y-%m-%d')
- enddate = datetime.date(2018, 3, 27).strftime('%Y-%m-%d')
- APP_ID = '你的id'
- API_KEY = '你的key'
- SECRET_KEY = '你的key'
- client = AipNlp(APP_ID, API_KEY, SECRET_KEY)
-
- def get_sentiments(text,dates):
- try:
- sitems=client.sentimentClassify(text)['items'][0]#情感分析
- positive=sitems['positive_prob']#积极概率
- confidence=sitems['confidence']#置信度
- sentiment=sitems['sentiment']#0表示消极,1表示中性,2表示积极
- #tagitems = client.commentTag(text, {'type': 9}) # 评论观点
- #propertys=tagitems['prop']#属性
- #adj=tagitems['adj']#描述词
- output='{}\t{}\t{}\t{}\n'.format(dates,positive,confidence,sentiment)
- f=codecs.open('sentiment.xls','a+','utf-8')
- f.write(output)
- f.close()
- print('Done')
- except Exception as e:
- print(e)
- def get_content():
- data=pd.DataFrame(pd.read_excel('eastmoney.xlsx',sheet_name=0))
- data.columns=['Dates','viewpoints']#重设表头
- data=data.sort_values(by=['Dates'])#按日期排列
- vdata=data[data.Dates>=startdate]#提取对应日期的数据
- newvdata=vdata.groupby('Dates').agg(lambda x:list(x))#按日期分组,把同一天的评论并到一起
- return newvdata
-
- viewdata=get_content()
- for i in range(viewdata.shape[0]):
- print('正在处理第{}条,还剩{}条'.format(i,viewdata.shape[0]-1))
- dates=viewdata.index[i]
- for view in viewdata.viewpoints[i]:
- print(view)
- get_sentiments(view,dates)
处理完大概是这样的效果。
接着,我们画出曲线图处理。
- import pandas as pd
- from datetime import datetime
- from pylab import *
- import matplotlib.dates as mdates
- import dateutil, pylab, random
- from pylab import *
-
-
- import matplotlib.pyplot as plt
-
- data=pd.DataFrame(pd.read_excel('sentiment.xlsx'))
- data.columns=['date','positive','confidence','sentiments']
- newdata=data.groupby('date').agg(lambda x:list(x))## 相同日期的聚一起
-
- times=[]
- sentiment=[]
- for i in range(1,newdata.shape[0]):
- p=newdata.positive[i]
- d=newdata.index[i]
- sum=0
- for z in p:
- sum+=z
- average=sum/len(p)
- times.append(d)
- sentiment.append(average)
- pylab.plot_date(pylab.date2num(times), sentiment, linestyle='-')
- xtext = xlabel('time')
- ytext = ylabel('sentiments')
- ttext = title('sentiments')
- grid(True)
- setp(ttext, size='large', color='r')
-
-
- show()
画出来是这个样子的。
好像看不出来,那么,画一张图看看呢。股票的价格取每天的均价。
- import pandas as pd
- import matplotlib.pyplot as plt
-
- data1=pd.read_excel('sentiment.xlsx',sheet_name=0)
- data1=data1.fillna(method='pad')#因为周末没开盘,所以用周五的价格填充,保证画图连续性
- #newdata=pd.merge(data1,data2,how='left',left_on='date',right_on='日期')
- x=data1.date
- y1=data1.pos
- y2=data1.price
- fig = plt.figure()
- ax1 = fig.add_subplot(111)
- ax1.plot(x, y1)
- ax1.set_ylabel('sitiment')
- ax1.set_title("Sentiment")
- ax1.legend(loc='upper right')
-
- ax2 = ax1.twinx()#设置双y轴
- ax2.plot(x, y2, 'r')
- ax2.set_ylabel('stock price')
- ax2.set_xlabel('date')
- ax2.legend(loc='upper left')
- plt.show()
看得出有轻微的关系,但是没那么明显。
总结一下可能的原因:
1.可能是百度的情感分析不是很准,比如我试了‘今天天气不错,但是我并不开心’,给我积极的概率是0.8,显然不是很正确。
2.采集的评论没有过滤,或者信息量不是很大,需要更新采集数据源。
3.可能真的并没有那么大的关联。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。