当前位置:   article > 正文

我们一起来DIY一个电子秤吧_hx711温度补偿

hx711温度补偿

前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到教程。
人工智能编程入门博客


一个专注于嵌入式知识分享,学习路上不迷路的公众号,欢迎关注。
想加技术交流群的,可以扫码加我微信,让我拉你进群。

目前的电子称重装置大都使用电阻应变桥式传感器,其核心是由电阻应变计(应变片)构成的电桥电路,这类传感器具有成本低、精度高且温度稳定性好的特点。

但其检测原理决定该类传感器输出电压低,要经过差分放大电路放大数百倍才能用于A/D转换。

一般说来,传感器输出的电压值都非常小,基本上都是毫伏级甚至微伏级。在设计高精度电子秤时,需要外部放大电路来获得足够的增益。

实现目标

  • 实现HX711模块的驱动
  • 实现电子秤的校准
  • 准确输出待测物品的重量

所需工具及环境

  • Keil 5
  • STM32F103RET6核心板(本平台自制专用核心板,随便找一个开发板亦可)
  • 电子秤模块

本文源码

注意
HX711 AD模块的DOUT引脚与STM32的PA6相连;
HX711 AD模块的PD_SCK引脚与STM32的PA7相连。

公众号后台回复关键字“HX711”,获取HX711模块资料及工程源码。

电子秤模块

上图所示的即为压力称重传感器,其输出电压信号,压力越大输出电压信号越大 。

称重传感器采用电阻应变片桥式电路实现,主要由弹性体和电阻应变片等组成。

应用场景

  • 价格计算秤
  • 计数秤
  • 称重秤
  • 零售秤

称重传感器模块有灵敏度激励电压两个重要参数,比如两个参数的值可能为如下值:

灵敏度: 1.0mV/V
激励电压: 3~12V

满量程输出电压 = 激励电压 * 灵敏度
比如激励电压是5V,则输出最大电压是5mV。

应变片

电阻应变片把导体形变的物理信号转换成电阻变化的信号。

称重传感器模块上的胶基(硅橡胶)下面存放的就是应变片。

应变片一般由金属丝为材料制作的应变电阻,当金属丝受外力作用时,其长度和截面积都会发生变化,进而其电阻值即会发生改变。

当金属丝受外力作用而伸长时,其长度增加,而截面积减少,电阻值便会增大。

当金属丝受外力作用而压缩时,长度减小而截面增加,电阻值则会减小。

金属应变片对电阻丝材料有较高的要求,一般要求灵敏度系数大,电阻温系数小,具有优良的机械加工和焊接性能等,康铜是目前应用最广泛的应变丝材料。

称重传感器模块上下表面各有一个应变片,每个应变片内有2个压力电阻。一共为4个压力电阻,组成全桥式电路。全桥电路可以提高所测的精度,而且电桥本身也能实现自补偿(温度补偿)。

桥式传感器

电桥电路的被测量者的状态量一般是非常微弱的,比如在称重传感器中,就是把电阻片的电阻变化率ΔR/R转换成电压输出,然后提供给放大电路放大后进行测量。

上图中的电桥电路,由四个电阻R1、R2、R3、R4组成一个四边形的回路,每一边称作电桥的“桥臂”。

a、b、c、d为四个结点,a、c结点之间接入电源,另外两个结点(b、d)之间电压差作为输出电压。

b、d点的电压相等时称为“电桥平衡”;反之,称为“电桥不平衡”。

电桥平衡的条件:上下两个桥臂的左右桥臂电阻的比例相等。

若桥路的四个桥臂相邻电阻的电阻值变化趋势相同,桥路输出电压为0。

若相邻电阻的电阻值变化趋势相反,桥路就会有电压输出。

全桥的四个桥臂都为应变片的话,由于温度变化而引起的电阻值漂移数值一致,就可以相互抵消,进而全桥能够实现温度的自补偿。

应用桥式电路可以有效提高传感器的灵敏度。

HX711 AD模块原理图

该方案使用内部时钟振荡器(XI=0),10Hz的输出数据速率(RATE=0,可配置为80Hz)。

电源(2.7~5.5V)直接取用与MCU芯片相同的供电电源。片内稳压电源电路通过片外PNP管S8550和分压电阻R12、R13向传感器和A/D转换器提供稳定的低噪声模拟电源。

通道A、B模拟差分输入;

通道A模拟差分输入可直接与桥式传感器的差分输出相接。

由于桥式传感器输出的信号较小,为了充分利用A/D转换器的输入动态范围,该通道的可编程增益较大,为128或64。这些增益所对应的满量程差分输入电压分别±20mV或±40mV。

通道B为固定的32增益,所对应的满量程差分输入电压为±80mV。

安装方法

连线

HX711 AD模块可以将电压转换为数字信号,HX711 AD模块与称重传感器接线方式:

  • 红线接HX711模块的激励电压正(E+)
  • 黑线接HX711模块的激励电压负(E-)
  • 绿线(或蓝线)接HX711模块的A+
  • 白线接HX711模块的A-

称重原理

当弹性体因承载产生形变时,电阻应变片受到拉伸或压缩而产生变形,它的阻值将发生变化(增大或减小),从而使电桥失去平衡,从而产生相应的差动信号,供后续电路(本实例是HX711)测量和转换。

应变片中的电阻丝的电阻相对变化量与材料力学中的轴向应变关系,在很大范围内是线性的。

因为受拉后应变片的阻值R的变化量很小,为了方便测量这一微小的变化量,所以采用全桥式电路可以把被测量的本底去掉,转换成一个在0值附近变化的毫伏级的输出电压,进而经过放大器之后,通过A/D转换器求得这个输出电压。

由上我们可以近似认为应力的变化和电阻的变化量成正比,我们利用这一特性,进而实现物品重量的测量。

下面我们介绍一下测量这个电压的A/D模块:HX711

HX711简介

HX711是一款专为高精度电子秤而设计的24位A/D转换器芯片。与同类型其它芯片相比,该芯片集成了包括稳压电源、片内时钟振荡器等其它同类型芯片所需要的外围电路,具有集成度高、响应速度快、抗干扰性强等优点。

降低了电子秤的整机成本,提高了整机的性能和可靠性。

该芯片与后端MCU 芯片的接口和编程非常简单,所有控制信号由管脚驱动,无需对芯片内部的寄存器编程。

输入选择开关可任意选取通道A 或通道B,与其内部的低噪声可编程放大器相连。

通道A 的可编程增益为128 或64,对应的满额度差分输入信号幅值分别为±20mV或±40mV。通道B 则为固定的32 增益,常用于系统参数检测。

芯片内提供的稳压电源可以直接向外部传感器和芯片内的A/D 转换器提供电源,系统板上无需另外的模拟电源。芯片内的时钟振荡器不需要任何外接器件。上电自动复位功能简化了开机的初始化过程。

芯片特点

  • 两路可选择差分输入;
  • 片内低噪声可编程放大器,可选增益为64 和128;
  • 可选择10Hz 或80Hz 的输出数据速率;
  • 工作电压范围:2.6 ~ 5.5V;
  • 工作温度范围:-20 ~ +85℃;
  • 16 管脚的SOP-16 封装;
  • 校准后称重精度: 1g

HX711内部框图

HX711引脚定义

建议使用通道A与传感器相连,作为小信号输入通道;

通道B用于系统参数检测,如电池电压检测。

与单片机通信

HX711芯片与单片机的通讯只需要两个引脚,时钟引脚PD_SCK及数据引脚DOUT,用来输出数据,选择输入通道和增益。

当数据输出管脚DOUT为高电平时,表明A/D转换器还未准备好输出数据,此时串口时钟输入信号PD_SCK应为低电平。当DOUT从高电平变低电平后,PD_SCK应输入25至27个不等的时钟脉冲。

其中第一个时钟脉冲的上升沿将读出输出24位数据的最高位(MSB),直至第24个时钟脉冲完成,24位输出数据从最高位至最低位逐位输出完成。

第25至27个时钟脉冲用来决定下一次A/D转换的输入通道和增益。

如下图所示,脉冲数为25个时,代表输入通道为A,增益为128倍。

注意: 芯片上电复位之后,通道A和增益128会被自动选择作为第一次A/D转换的输入通道和增益。

通道A 的可编程增益为128 或64,对应的满额度差分输入信号幅值分别为±20mV或±40mV。

计算输出电压

对于单片机来说,只需要通过两个普通的IO口与HX711的PD_SCK、DOUT引脚相连,并根据以上时序进行编程,即可完成对HX711芯片的控制,控制程序如下。

AD值获取

//读取HX711
//****************************************************
unsigned long HX711_Read(void)	//增益128
{
	unsigned long count; 
	unsigned char i; 
  	HX711_DOUT=1; 
	Delay__hx711_us();
	Delay__hx711_us();
  	HX711_SCK=0; 
  	count=0;
	EA = 1; 
  	while(HX711_DOUT); 
	EA = 0;
  	for(i=0;i<24;i++)
	{ 
	  	HX711_SCK=1; 
	  	count=count<<1; 
		HX711_SCK=0; 
	  	if(HX711_DOUT)
			count++; 
	} 
 	HX711_SCK=1; 
  	count=count^0x800000;//第25个脉冲下降沿来时,转换数据
	Delay__hx711_us();
	HX711_SCK=0;  
	return(count);
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28

测量校准

(1)测量空载情况下的AD值
void Get_Maopi(void)
{    
	Weight_Maopi = HX711_Read();
}
  • 1
  • 2
  • 3
  • 4

为了验证方便,我们在硬件上电复位的时候,获取毛重的值,即在main函数中的while(1)循环前面调用上面的函数获取毛重值,然后将此A/D值保存至全局变量Weight_Maopi中。

(2)测量一个已知重量物品的AD值

已知重量的物品可以选择标准砝码:

或者拿家里做糕点的电子秤:

或者拿一个已知重量的物品,比如:

因为我们这里需要对咱们自制的电子秤进行验证,所以我们选用电子秤来测量物品重量。

称重函数的实现:

float Get_Weight(void)
{
    float fWeight = 0.0;
    
	Weight_Shiwu = HX711_Read();
    
    fWeight = Weight_Shiwu-Weight_Maopi;
    
    if(fWeight <= 0)
        fWeight = 0;
    
	fWeight = ((float)fWeight/dK); 
	
	return fWeight;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15

while(1)循环中循环获取待测物品的实时A/D值,然后将此A/D值保存至全局变量Weight_Shiwu中。

(3)获取比例系数

通过printf函数打印出上面变量的值:

printf("Weight=%d,Weight_Shiwu=%ld ,Maopi=%ld,(Weight-Maopi)=%ld \r\n",(int)Weight,Weight_Shiwu,Weight_Maopi,(Weight_Shiwu-Weight_Maopi)); 
  • 1

物品重量AD值
空载0g8512030
充电宝221g8600300

因为输出的A/D编码值和输出电压是成正比的,而输出电压和重量成正比,利用上面的两个值,求得AD值和重量的线性方程的K。

K = (8600300-8512030) / 221 = 88270/221 = 399.41

AD与重量转换

代码实现
float Get_Weight(void)
{
    float fWeight = 0.0;
    
	Weight_Shiwu = HX711_Read();
    
    fWeight = Weight_Shiwu-Weight_Maopi;
    
    if(fWeight <= 0)
        fWeight = 0;
    
	fWeight = ((float)fWeight/dK); 
	
	return fWeight;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15

代码中的dK即为上面求得线性方程的K,其中Weight_Shiwu为当前电子秤上物品的A/D值,Weight_Maopi为空载不放物品的时候的A/D值。两个A/D值的差值与K的商即为待测物品的重量。

Get_Weight() 函数的返回值即为求得的真实重量,单位g。

扩展

此外,程序可以增加的功能还有:

  1. LCD显示
  2. 矩阵键盘输入及语音播报功能
  3. 标准砝码校准功能(如500g),其实就是修正系数的自我修正功能
  4. 去皮功能
  5. 金钱累加功能
  6. 计算金额等等功能

思考

今天主要介绍一下称重传感器模块的使用,下面内容大家可以思考一下。

  • 全桥电路的优点?
  • HX711芯片输出的数据编码与电压的转换?
  • HX711测量精度的优化?
  • 称重传感器模块的其他应用电路?
  • 提高称重的精度?(分段求取比例系数?)

模块虽小,内容倒很多,哪里有理解不到位的地方,欢迎留言区指出,以免误导大家。

本文内容由网友自发贡献,转载请注明出处:https://www.wpsshop.cn/w/不正经/article/detail/512740
推荐阅读
相关标签
  

闽ICP备14008679号