赞
踩
接口优化可以从如下方案入手
1、批量操作、异步、并行思想、空间换时间、池化思想,sql优化等
优化前:
//for循环单笔入库
for(TransDetail detail:transDetailList){
insert(detail);
}
优化后:
batchInsert(transDetailList);
打个比喻:
打个比喻:假如你需要搬一万块砖到楼顶,你有一个电梯,电梯一次可以放适量的砖(最多放500), 你可以选择一次运送一块砖,也可以一次运送500,你觉得哪种方式更方便,时间消耗更少?
耗时操作,考虑用异步处理,这样可以降低接口耗时。
假设一个转账接口,匹配联行号,是同步执行的,但是它的操作耗时有点长,优化前的流程:
为了降低接口耗时,更快返回,你可以把匹配联行号移到异步处理,优化后:
在适当的业务场景,恰当地使用缓存,是可以大大提高接口性能的。缓存其实就是一种空间换时间的思想,就是你把要查的数据,提前放好到缓存里面,需要时,直接查缓存,而避免去查数据库或者计算的过程。
这里的缓存包括:Redis缓存,JVM本地缓存,memcached,或者Map等等。我举个我工作中,一次使用缓存优化的设计吧,比较简单,但是思路很有借鉴的意义。
那是一次转账接口的优化,老代码,每次转账,都会根据客户账号,查询数据库,计算匹配联行号。
因为每次都查数据库,都计算匹配,比较耗时,所以使用缓存,优化后流程如下:
预取思想很容易理解,就是提前把要计算查询的数据,初始化到缓存。如果你在未来某个时间需要用到某个经过复杂计算的数据,才实时去计算的话,可能耗时比较大。这时候,我们可以采取预取思想,提前把将来可能需要的数据计算好,放到缓存中,等需要的时候,去缓存取就行。这将大幅度提高接口性能。
我记得以前在第一个公司做视频直播的时候,看到我们的直播列表就是用到这种优化方案。就是启动个任务,提前把直播用户、积分等相关信息,初始化到缓存。
大家应该都记得,我们为什么需要使用线程池?
线程池可以帮我们管理线程,避免增加创建线程和销毁线程的资源损耗。
如果你每次需要用到线程,都去创建,就会有增加一定的耗时,而线程池可以重复利用线程,避免不必要的耗时。 池化技术不仅仅指线程池,很多场景都有池化思想的体现,它的本质就是预分配与循环使用。
比如TCP三次握手,大家都很熟悉吧,它为了减少性能损耗,引入了Keep-Alive长连接,避免频繁的创建和销毁连接。当然,类似的例子还有很多,如数据库连接池、HttpClient连接池。
我们写代码的过程中,学会池化思想,最直接相关的就是使用线程池而不是去new一个线程。
如果你调用一个系统B的接口,但是它处理业务逻辑,耗时需要10s甚至更多。然后你是一直阻塞等待,直到系统B的下游接口返回,再继续你的下一步操作吗?这样显然不合理。
我们参考IO多路复用模型。即我们不用阻塞等待系统B的接口,而是先去做别的操作。等系统B的接口处理完,通过事件回调通知,我们接口收到通知再进行对应的业务操作即可。
如果大家忘记了IO模型,可以复习一下我的文章:看一遍就理解:IO模型详解
假设我们设计一个APP首页的接口,它需要查用户信息、需要查banner信息、需要查弹窗信息等等。如果是串行一个一个查,比如查用户信息200ms,查banner信息100ms、查弹窗信息50ms,那一共就耗时350ms了,如果还查其他信息,那耗时就更大了。
其实我们可以改为并行调用,即查用户信息、查banner信息、查弹窗信息,可以同时并行发起。
最后接口耗时将大大降低。有些小伙伴说,不知道如何使用并行优化接口?
我之前写过一篇文章并行优化接口的文章,保姆级别的!大家可以看一下,看完会有用的:后端思维篇,手把手教你写一个并行调用模板
在高并发场景,为了防止超卖等情况,我们经常需要加锁来保护共享资源。但是,如果加锁的粒度过粗,是很影响接口性能的。
什么是加锁粒度呢?
其实就是就是你要锁住的范围是多大。比如你在家上卫生间,你只要锁住卫生间就可以了吧,不需要将整个家都锁起来不让家人进门吧,卫生间就是你的加锁粒度。
不管你是synchronized加锁还是redis分布式锁,只需要在共享临界资源加锁即可,不涉及共享资源的,就不必要加锁。这就好像你上卫生间,不用把整个家都锁住,锁住卫生间门就可以了。
比如,在业务代码中,有一个ArrayList因为涉及到多线程操作,所以需要加锁操作,假设刚好又有一段比较耗时的操作(代码中的slowNotShare方法)不涉及线程安全问题。反例加锁,就是一锅端,全锁住:
//不涉及共享资源的慢方法 private void slowNotShare() { try { TimeUnit.MILLISECONDS.sleep(100); } catch (InterruptedException e) { } } //错误的加锁方法 public int wrong() { long beginTime = System.currentTimeMillis(); IntStream.rangeClosed(1, 10000).parallel().forEach(i -> { //加锁粒度太粗了,slowNotShare其实不涉及共享资源 synchronized (this) { slowNotShare(); data.add(i); } }); log.info("cosume time:{}", System.currentTimeMillis() - beginTime); return data.size(); } 复制代码
正例:
public int right() {
long beginTime = System.currentTimeMillis();
IntStream.rangeClosed(1, 10000).parallel().forEach(i -> {
slowNotShare();//可以不加锁
//只对List这部分加锁
synchronized (data) {
data.add(i);
}
});
log.info("cosume time:{}", System.currentTimeMillis() - beginTime);
return data.size();
}
复制代码
如果数据太大,落地数据库实在是慢的话,就可以考虑先用文件的方式暂存。先保存文件,再异步下载文件,慢慢保存到数据库。
这里可能会有点抽象,给大家分享一个,我之前的一个真实的优化案例吧。
之前开发了一个转账接口。如果是并发开启,10个并发度,每个批次1000笔转账明细数据,数据库插入会特别耗时,大概6秒左右;这个跟我们公司的数据库同步机制有关,并发情况下,因为优先保证同步,所以并行的插入变成串行啦,就很耗时。
优化前,1000笔明细转账数据,先落地DB数据库,返回处理中给用户,再异步转账。如图:
记得当时压测的时候,高并发情况,这1000笔明细入库,耗时都比较大。所以我转换了一下思路,把批量的明细转账记录保存的文件服务器,然后记录一笔转账总记录到数据库即可。接着异步再把明细下载下来,进行转账和明细入库。最后优化后,性能提升了十几倍。
优化后,流程图如下:
如果你的接口耗时瓶颈就在数据库插入操作这里,用来批量操作等,还是效果还不理想,就可以考虑用文件或者MQ等暂存。有时候批量数据放到文件,会比插入数据库效率更高。
提到接口优化,很多小伙伴都会想到添加索引。没错,添加索引是成本最小的优化,而且一般优化效果都很不错。
索引优化这块的话,一般从这几个维度去思考:
我们开发的时候,容易疏忽而忘记给SQL添加索引。所以我们在写完SQL的时候,就顺手查看一下 explain执行计划。
explain select * from user_info where userId like '%123';
复制代码
你也可以通过命令show create table ,整张表的索引情况。
show create table user_info;
复制代码
如果某个表忘记添加某个索引,可以通过alter table add index命令添加索引
alter table user_info add index idx_name (name);
复制代码
一般就是:SQL的where条件的字段,或者是order by 、group by后面的字段需需要添加索引。
有时候,即使你添加了索引,但是索引会失效的。田螺哥整理了索引失效的常见原因:
我们的索引不是越多越好,需要合理设计。比如:
处了索引优化,其实SQL还有很多其他有优化的空间。比如这些:
更详细的内容,大家可以看我之前的这两篇文章哈:
为了保证数据库数据的一致性,在涉及到多个数据库修改操作时,我们经常需要用到事务。而使用spring声明式事务,又非常简单,只需要用一个注解就行@Transactional,如下面的例子:
@Transactional
public int createUser(User user){
//保存用户信息
userDao.save(user);
passCertDao.updateFlag(user.getPassId());
return user.getUserId();
}
复制代码
这块代码主要逻辑就是创建个用户,然后更新一个通行证pass的标记。如果现在新增一个需求,创建完用户,调用远程接口发送一个email消息通知,很多小伙伴会这么写:
@Transactional
public int createUser(User user){
//保存用户信息
userDao.save(user);
passCertDao.updateFlag(user.getPassId());
sendEmailRpc(user.getEmail());
return user.getUserId();
}
复制代码
这样实现可能会有坑,事务中嵌套RPC远程调用,即事务嵌套了一些非DB操作。如果这些非DB操作耗时比较大的话,可能会出现大事务问题。
所谓大事务问题就是,就是运行时间长的事务。由于事务一致不提交,就会导致数据库连接被占用,即并发场景下,数据库连接池被占满,影响到别的请求访问数据库,影响别的接口性能。
大事务引发的问题主要有:接口超时、死锁、主从延迟等等。因此,为了优化接口,我们要规避大事务问题。我们可以通过这些方案来规避大事务:
在以前公司分析过几个接口耗时长的问题,最终结论都是因为深分页问题。
深分页问题,为什么会慢?我们看下这个SQL
select id,name,balance from account where create_time> '2020-09-19' limit 100000,10;
复制代码
limit 100000,10意味着会扫描100010行,丢弃掉前100000行,最后返回10行。即使create_time,也会回表很多次。
我们可以通过标签记录法和延迟关联法来优化深分页问题。
就是标记一下上次查询到哪一条了,下次再来查的时候,从该条开始往下扫描。就好像看书一样,上次看到哪里了,你就折叠一下或者夹个书签,下次来看的时候,直接就翻到啦。
假设上一次记录到100000,则SQL可以修改为:
select id,name,balance FROM account where id > 100000 limit 10;
复制代码
这样的话,后面无论翻多少页,性能都会不错的,因为命中了id主键索引。但是这种方式有局限性:需要一种类似连续自增的字段。
延迟关联法,就是把条件转移到主键索引树,然后减少回表。优化后的SQL如下:
select acct1.id,acct1.name,acct1.balance FROM account acct1 INNER JOIN (SELECT a.id FROM account a WHERE a.create_time > '2020-09-19' limit 100000, 10) AS acct2 on acct1.id= acct2.id;
复制代码
优化思路就是,先通过idx_create_time二级索引树查询到满足条件的主键ID,再与原表通过主键ID内连接,这样后面直接走了主键索引了,同时也减少了回表。
优化程序逻辑、程序代码,是可以节省耗时的。比如,你的程序创建多不必要的对象、或者程序逻辑混乱,多次重复查数据库、又或者你的实现逻辑算法不是最高效的,等等。
我举个简单的例子:复杂的逻辑条件,有时候调整一下顺序,就能让你的程序更加高效。
假设业务需求是这样:如果用户是会员,第一次登陆时,需要发一条感谢短信。如果没有经过思考,代码直接这样写了
if(isUserVip && isFirstLogin){
sendSmsMsg();
}
复制代码
假设有5个请求过来,isUserVip判断通过的有3个请求,isFirstLogin通过的只有1个请求。 那么以上代码,isUserVip执行的次数为5次,isFirstLogin执行的次数也是3次,如下:
如果调整一下isUserVip和isFirstLogin的顺序:
if(isFirstLogin && isUserVip ){
sendMsg();
}
复制代码
isFirstLogin执行的次数是5次,isUserVip执行的次数是1次:
酱紫程序是不是变得更高效了呢?
压缩传输内容,传输报文变得更小,因此传输会更快啦。10M带宽,传输10k的报文,一般比传输1M的会快呀。
打个比喻,一匹千里马,它驮着100斤的货跑得快,还是驮着10斤的货物跑得快呢?
再举个视频网站的例子:
如果不对视频做任何压缩编码,因为带宽又是有限的。巨大的数据量在网络传输的耗时会比编码压缩后,慢好多倍。
之前看过几个慢SQL,都是跟深分页问题有关的。发现用来标签记录法和延迟关联法,效果不是很明显,原因是要统计和模糊搜索,并且统计的数据是真的大。最后跟组长对齐方案,就把数据同步到Elasticsearch,然后这些模糊搜索需求,都走Elasticsearch去查询了。
我想表达的就是,如果数据量过大,一定要用关系型数据库存储的话,就可以分库分表。但是有时候,我们也可以使用NoSQL,如Elasticsearch、Hbase等。
我们使用线程池,就是让任务并行处理,更高效地完成任务。但是有时候,如果线程池设计不合理,接口执行效率则不太理想。
一般我们需要关注线程池的这几个参数:核心线程、最大线程数量、阻塞队列。
大家可以看下我之前两篇有关于线程池的文章:
有时候,我们的接口慢,就是机器处理问题。主要有fullGC、线程打满、太多IO资源没关闭等等。
使用单例可以减轻加载的负担,缩短加载的时间,提高加载的效率,但并不是所有地方都适用于单例,简单来说,单例主要适用于以下三个方面:
第一,控制资源的使用,通过线程同步来控制资源的并发访问;
第二,控制实例的产生,以达到节约资源的目的;
第三,控制数据共享,在不建立直接关联的条件下,让多个不相关的进程或线程之间实现通信。
要知道,当某个对象被定义为static变量所引用,那么GC通常是不会回收这个对象所占有的内存,如
public class A{
private static B b = new B();
}
此时静态变量b的生命周期与A类同步,如果A类不会卸载,那么b对象会常驻内存,直到程序终止。
尽量避免在经常调用的方法,循环中new对象,由于系统不仅要花费时间来创建对象,而且还要花时间对这些对象进行垃圾回收和处理,在我们可以控制的范围内,最大限度的重用对象,最好能用基本的数据类型或数组来替代对象。
带有final修饰符的类是不可派生的。在JAVA核心API中,有许多应用final的例子,例如java.lang.String,为String类指定final防止了使用者覆盖length()方法。另外,如果一个类是final的,则该类所有方法都是final的。java编译器会寻找机会内联(inline)所有的final方法(这和具体的编译器实现有关)。此举能够使性能平均提高50%。
如:让访问实例内变量的getter/setter方法变成”final:
简单的getter/setter方法应该被置成final,这会告诉编译器,这个方法不会被重载,所以,可以变成”inlined”,例子:
class MAF {
public void setSize (int size) {
_size = size;
}
private int _size;
}
更正
class DAF_fixed {
final public void setSize (int size) {
_size = size;
}
private int _size;
}
调用方法时传递的参数以及在调用中创建的临时变量都保存在栈(Stack)中,速度较快。其他变量,如静态变量,实例变量等,都在堆(Heap)中创建,速度较慢。
虽然包装类型和基本类型在使用过程中是可以相互转换,但它们两者所产生的内存区域是完全不同的,基本类型数据产生和处理都在栈中处理,包装类型是对象,是在堆中产生实例。在集合类对象,有对象方面需要的处理适用包装类型,其他的处理提倡使用基本类型。
都知道,实现同步是要很大的系统开销作为代价的,甚至可能造成死锁,所以尽量避免无谓的同步控制。synchronize方法被调用时,直接会把当前对象锁 了,在方法执行完之前其他线程无法调用当前对象的其他方法。所以synchronize的方法尽量小,并且应尽量使用方法同步代替代码块同步。
实际上,将资源清理放在finalize方法中完成是非常不好的选择,由于GC的工作量很大,尤其是回收Young代内存时,大都会引起应用程序暂停,所以再选择使用finalize方法进行资源清理,会导致GC负担更大,程序运行效率更差。
String str = “hello”;
上面这种方式会创建一个“hello”字符串,而且JVM的字符缓存池还会缓存这个字符串;
String str = new String(“hello”);
此时程序除创建字符串外,str所引用的String对象底层还包含一个char[]数组,这个char[]数组依次存放了h,e,l,l,o
HashTable、Vector等使用了同步机制,降低了性能
当你要创建一个比较大的hashMap时,充分利用这个构造函数
public HashMap(int initialCapacity, float loadFactor);
避免HashMap多次进行了hash重构,扩容是一件很耗费性能的事,在默认中initialCapacity只有16,而loadFactor是 0.75,需要多大的容量,你最好能准确的估计你所需要的最佳大小,同样的Hashtable,Vectors也是一样的道理。
如:
for(int i=0;i<list.size();i++)
应该改为
for(int i=0,len=list.size();i<len;i++)
并且在循环中应该避免使用复杂的表达式,在循环中,循环条件会被反复计算,如果不使用复杂表达式,而使循环条件值不变的话,程序将会运行的更快。
如:
A a = new A();
if(i==1){list.add(a);}
应该改为
if(i==1){
A a = new A();
list.add(a);
}
程序中使用到的资源应当被释放,以避免资源泄漏。这最好在finally块中去做。不管程序执行的结果如何,finally块总是会执行的,以确保资源的正确关闭。
"/"是一个代价很高的操作,使用移位的操作将会更快和更有效
如
int num = a / 4;
int num = a / 8;
应该改为
int num = a >> 2;
int num = a >> 3;
但注意的是使用移位应添加注释,因为移位操作不直观,比较难理解
同样的,对于’*'操作,使用移位的操作将会更快和更有效
如
int num = a * 4;
int num = a * 8;
应该改为
int num = a << 2;
int num = a << 3;
StringBuffer 的构造器会创建一个默认大小(通常是16)的字符数组。在使用中,如果超出这个大小,就会重新分配内存,创建一个更大的数组,并将原先的数组复制过来,再 丢弃旧的数组。在大多数情况下,你可以在创建 StringBuffer的时候指定大小,这样就避免了在容量不够的时候自动增长,以提高性能。
如:
StringBuffer buffer = new StringBuffer(1000);
大部分时,方法局部引用变量所引用的对象 会随着方法结束而变成垃圾,因此,大部分时候程序无需将局部,引用变量显式设为null。
例如:
Java代码
Public void test(){
Object obj = new Object();
……
Obj=null;
}
上面这个就没必要了,随着方法test()的执行完成,程序中obj引用变量的作用域就结束了。但是如果是改成下面:
Java代码
Public void test(){
Object obj = new Object();
……
Obj=null;
//执行耗时,耗内存操作;或调用耗时,耗内存的方法
……
}
这时候就有必要将obj赋值为null,可以尽早的释放对Object对象的引用。
二维数据占用的内存空间比一维数组多得多,大概10倍以上。
除非是必须的,否则应该避免使用split,split由于支持正则表达式,所以效率比较低,如果是频繁的几十,几百万的调用将会耗费大量资源,如果确实需要频繁的调用split,可以考虑使用apache的StringUtils.split(string,char),频繁split的可以缓存结果。
一个是线性表,一个是链表,一句话,随机查询尽量使用ArrayList,ArrayList优于LinkedList,LinkedList还要移动指针,添加删除的操作LinkedList优于ArrayList,ArrayList还要移动数据,不过这是理论性分析,事实未必如此,重要的是理解好2者得数据结构,对症下药。
System.arraycopy() 要比通过循环来复制数组快的多
尽可能将经常使用的对象进行缓存,可以使用数组,或HashMap的容器来进行缓存,但这种方式可能导致系统占用过多的缓存,性能下降,推荐可以使用一些第三方的开源工具,如EhCache,Oscache进行缓存,他们基本都实现了FIFO/FLU等缓存算法。
有时候问题不是由当时的堆状态造成的,而是因为分配失败造成的。分配的内存块都必须是连续的,而随着堆越来越满,找到较大的连续块越来越困难。
当创建一个异常时,需要收集一个栈跟踪(stack track),这个栈跟踪用于描述异常是在何处创建的。构建这些栈跟踪时需要为运行时栈做一份快照,正是这一部分开销很大。当需要创建一个 Exception 时,JVM 不得不说:先别动,我想就您现在的样子存一份快照,所以暂时停止入栈和出栈操作。栈跟踪不只包含运行时栈中的一两个元素,而是包含这个栈中的每一个元素。
如果您创建一个 Exception ,就得付出代价。好在捕获异常开销不大,因此可以使用 try-catch 将核心内容包起来。从技术上讲,您甚至可以随意地抛出异常,而不用花费很大的代价。招致性能损失的并不是 throw 操作——尽管在没有预先创建异常的情况下就抛出异常是有点不寻常。真正要花代价的是创建异常。幸运的是,好的编程习惯已教会我们,不应该不管三七二十一就抛出异常。异常是为异常的情况而设计的,使用时也应该牢记这一原则。
特别是String对象的使用中,出现字符串连接情况时应使用StringBuffer代替,由于系统不仅要花时间生成对象,以后可能还需要花时间对这些对象进行垃圾回收和处理。因此生成过多的对象将会给程序的性能带来很大的影响。
默认情况下,调用类的构造函数时,java会把变量初始化成确定的值,所有的对象被设置成null,整数变量设置成0,float和double变量设置成0.0,逻辑值设置成false。当一个类从另一个类派生时,这一点尤其应该注意,因为用new关键字创建一个对象时,构造函数链中的所有构造函数都会被自动调用。这里有个注意,给成员变量设置初始值但需要调用其他方法的时候,最好放在一个方法比如initXXX()中,因为直接调用某方法赋值可能会因为类尚未初始化而抛空指针异常,如:public int state = this.getState();
Error是获取系统错误的类,或者说是虚拟机错误的类。不是所有的错误Exception都能获取到的,虚拟机报错Exception就获取不到,必须用Error获取。
StringBuffer的默认容量为16,当StringBuffer的容量达到最大容量时,她会将自身容量增加到当前的2倍+2,也就是2*n+2。无论何时,只要StringBuffer到达她的最大容量,她就不得不创建一个新的对象数组,然后复制旧的对象数组,这会浪费很多时间。所以给StringBuffer设置一个合理的初始化容量值,是很有必要的!
Vector与StringBuffer类似,每次扩展容量时,所有现有元素都要赋值到新的存储空间中。Vector的默认存储能力为10个元素,扩容加倍。vector.add(index,obj) 这个方法可以将元素obj插入到index位置,但index以及之后的元素依次都要向下移动一个位置(将其索引加 1)。除非必要,否则对性能不利。同样规则适用于remove(int index)方法,移除此向量中指定位置的元素。将所有后续元素左移(将其索引减 1)。返回此向量中移除的元素。所以删除vector最后一个元素要比删除第1个元素开销低很多。删除所有元素最好用removeAllElements()方法。如果要删除vector里的一个元素可以使用 vector.remove(obj);而不必自己检索元素位置,再删除,如int index = indexOf(obj);vector.remove(index);
用new关键词创建类的实例时,构造函数链中的所有构造函数都会被自动调用。但如果一个对象实现了Cloneable接口,我们可以调用她的clone()方法。clone()方法不会调用任何类构造函数。下面是Factory模式的一个典型实现:
public static Credit getNewCredit()
{
return new Credit();
}
改进后的代码使用clone()方法:
private static Credit BaseCredit = new Credit();
public static Credit getNewCredit()
{
return (Credit)BaseCredit.clone();
}
Map<String, String[]> paraMap = new HashMap<String, String[]>();
for( Entry<String, String[]> entry : paraMap.entrySet() )
{
String appFieldDefId = entry.getKey();
String[] values = entry.getValue();
}
利用散列值取出相应的Entry做比较得到结果,取得entry的值之后直接取key和value。
array 数组效率最高,但容量固定,无法动态改变,ArrayList容量可以动态增长,但牺牲了效率。
StringBuffer,StringBuilder的区别在于:java.lang.StringBuffer 线程安全的可变字符序列。一个类似于String的字符串缓冲区,但不能修改。StringBuilder与该类相比,通常应该优先使用StringBuilder类,因为她支持所有相同的操作,但由于她不执行同步,所以速度更快。为了获得更好的性能,在构造StringBuffer或StringBuilder时应尽量指定她的容量。当然如果不超过16个字符时就不用了。相同情况下,使用StringBuilder比使用StringBuffer仅能获得10%~15%的性能提升,但却要冒多线程不安全的风险。综合考虑还是建议使用StringBuffer。
如果你没有必要去访问对象的外部,那么就使你的方法成为静态方法。她会被更快地调用,因为她不需要一个虚拟函数导向表。这同事也是一个很好的实践,因为她告诉你如何区分方法的性质,调用这个方法不会改变对象的状态。
以下举几个实用优化的例子:
在不做编译优化的情况下,在循环中,循环条件会被反复计算,如果不使用复杂表达式,而使循环条件值不变的话,程序将会运行的更快。例子:
import java.util.Vector;
class CEL {
void method (Vector vector) {
for (int i = 0; i < vector.size (); i++) // Violation
; // ...
}
}
更正:
class CEL_fixed {
void method (Vector vector) {
int size = vector.size ()
for (int i = 0; i < size; i++)
; // ...
}
}
JVM为Vector扩充大小的时候需要重新创建一个更大的数组,将原原先数组中的内容复制过来,最后,原先的数组再被回收。可见Vector容量的扩大是一个颇费时间的事。
通常,默认的10个元素大小是不够的。你最好能准确的估计你所需要的最佳大小。例子:
import java.util.Vector;
public class DIC {
public void addObjects (Object[] o) {
// if length > 10, Vector needs to expand
for (int i = 0; i< o.length;i++) {
v.add(o); // capacity before it can add more elements.
}
}
public Vector v = new Vector(); // no initialCapacity.
}
更正:
自己设定初始大小。
public Vector v = new Vector(20); public Hashtable hash = new Hashtable(10);
程序中使用到的资源应当被释放,以避免资源泄漏。这最好在finally块中去做。不管程序执行的结果如何,finally块总是会执行的,以确保资源的正确关闭。
public class IRB
{
void method () {
int[] array1 = new int [100];
for (int i = 0; i < array1.length; i++) {
array1 [i] = i;
}
int[] array2 = new int [100];
for (int i = 0; i < array2.length; i++) {
array2 [i] = array1 [i]; // Violation
}
}
}
更正:
public class IRB
{
void method () {
int[] array1 = new int [100];
for (int i = 0; i < array1.length; i++) {
array1 [i] = i;
}
int[] array2 = new int [100];
System.arraycopy(array1, 0, array2, 0, 100);
}
}
简单的getter/setter方法应该被置成final,这会告诉编译器,这个方法不会被重载,所以,可以变成”inlined”,例子:
class MAF {
public void setSize (int size) {
_size = size;
}
private int _size;
}
更正:
class DAF_fixed {
final public void setSize (int size) {
_size = size;
}
private int _size;
}
常量字符串并不需要动态改变长度。
例子:
public class USC {
String method () {
StringBuffer s = new StringBuffer ("Hello");
String t = s + "World!";
return t;
}
}
更正:把StringBuffer换成String,如果确定这个String不会再变的话,这将会减少运行开销提高性能。
例子:
public class STR {
public void method(String s) {
String string = s + "d" // violation.
string = "abc" + "d" // violation.
}
}
更正:
将一个字符的字符串替换成’ ’
public class STR {
public void method(String s) {
String string = s + 'd'
string = "abc" + 'd'
}
}
以上仅是Java方面编程时的性能优化,性能优化大部分都是在时间、效率、代码结构层次等方面的权衡,各有利弊,不要把上面内容当成教条,或许有些对我们实际工作适用,有些不适用,还望根据实际工作场景进行取舍吧,活学活用,变通为宜。
我相信很多接口的效率问题不是一朝一夕形成的,在需求迭代的过程中,为了需求快速上线,采取直接累加代码的方式去实现功能,这样会造成以上这些接口性能问题。
变换思路,更高一级思考问题,站在接口设计者的角度去开发需求,会避免很多这样的问题,也是降本增效的一种行之有效的方式。
以上,共勉!
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。