赞
踩
这是caffe官方文档Notebook Examples中的第四个例子,链接地址:http://nbviewer.jupyter.org/github/BVLC/caffe/blob/master/examples/03-fine-tuning.ipynb
这个实例用于在与训练好的网络上微调flickr_style数据。用已经训练好的caffe网络微调自己的数据。这种方法的好处在于,与训练网络从大量的图片数据集中学习而来,其中间层可以捕获一般视觉表现的“语义”, 可以将其看做一个包含强大特征的黑盒子,我们仅需要几层就能获得好的数据特征。
首先,我们需要保存数据,包含如下几步:
1. 导入程序需要的包:
- import os
- caffe_root = '/home/sindyz/caffe-master/'
- os.chdir(caffe_root)
- import sys
- sys.path.insert(0,'./python')
-
- import caffe
- import numpy as np
- from pylab import *
- # This downloads the ilsvrc auxiliary data (mean file, etc),
- # and a subset of 2000 images for the style recognition task.
- !data/ilsvrc12/get_ilsvrc_aux.sh
- !scripts/download_model_binary.py models/bvlc_reference_caffenet
- !python examples/finetune_flickr_style/assemble_data.py \
- --workers=-1 --images=2000 --seed=1701 --label=5
!diff models/bvlc_reference_caffenet/train_val.prototxt models/finetune_flickr_style/train_val.prototxt
输出这里省略
4. 用python学习,比较微调后的结果与直接训练的结果
- niter = 200
- # losses will also be stored in the log
- train_loss = np.zeros(niter)
- scratch_train_loss = np.zeros(niter)
-
- caffe.set_device(0)
- caffe.set_mode_gpu()
- # We create a solver that fine-tunes from a previously trained network.
- solver = caffe.SGDSolver('models/finetune_flickr_style/solver.prototxt')
- solver.net.copy_from('models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel')
- # For reference, we also create a solver that does no finetuning.
- scratch_solver = caffe.SGDSolver('models/finetune_flickr_style/solver.prototxt')
-
- # We run the solver for niter times, and record the training loss.
- for it in range(niter):
- solver.step(1) # SGD by Caffe
- scratch_solver.step(1)
- # store the train loss
- train_loss[it] = solver.net.blobs['loss'].data
- scratch_train_loss[it] = scratch_solver.net.blobs['loss'].data
- if it % 10 == 0:
- print 'iter %d, finetune_loss=%f, scratch_loss=%f' % (it, train_loss[it], scratch_train_loss[it])
- print 'done'

5. 查看训练损失
可见,微调方法产生的损失波动平滑,而且比直接使用模型的损失小。
6. 将较小值部分放大:
plot(np.vstack([train_loss, scratch_train_loss]).clip(0, 4).T)
7. 查看经过200次迭代后,测试准确率,我们看到分类任务中有5个类别,随机测试的准确率为20%,与我们预期的一样,微调的结果要好于直接使用模型的结果。
- test_iters = 10
- accuracy = 0
- scratch_accuracy = 0
- for it in arange(test_iters):
- solver.test_nets[0].forward()
- accuracy += solver.test_nets[0].blobs['accuracy'].data
- scratch_solver.test_nets[0].forward()
- scratch_accuracy += scratch_solver.test_nets[0].blobs['accuracy'].data
- accuracy /= test_iters
- scratch_accuracy /= test_iters
- print 'Accuracy for fine-tuning:', accuracy
- print 'Accuracy for training from scratch:', scratch_accuracy
Accuracy for training from scratch: 0.218000002205
参考资料:
http://nbviewer.jupyter.org/github/BVLC/caffe/blob/master/examples/03-fine-tuning.ipynb
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。