赞
踩
本阶段主要从数据分析、概率论和线性代数及矩阵和凸优化这四大块讲解基础,旨在训练大家逻辑能力,分析能力。拥有良好的数学基础,有利于大家在后续课程的学习中更好的理解机器学习和深度学习的相关算法内容。同时对于AI研究尤为重要,例如人工智能中的智能很大一部分依托“概率论”实现的。
随着AI时代的到来以及其日益蓬勃的发展,Python作为AI时代的头牌语言地位基本确定,机器学习是着实令人兴奋,但其复杂度及难度较大,通常会涉及组装工作流和管道、设置数据源及内部和云部署之间的分流而有了Python库后,可帮助加快数据管道,且Python库也在不断更新发布中,所以本阶段旨在为大家学习后续的机器学习减负。
一、容器 | |
1)列表:list | 5)切片 |
二、函数 | |
1)lambda表达式 | 3)常用内置函数/高阶函数 |
三、常用库 | |
1)时间库 | 4)Matplotlib可视化绘图库 |
机器学习利用算法去分析数据、学习数据,随后对现实世界情况作出判断和预测。因此,与预先编写好、只能按照特定逻辑去执行指令的软件不同,机器实际上是在用大量数据和算法去“自我训练”,从而学会如何完成一项任务。
所以本阶段主要从机器学习概述、数据清洗和特征选择、回归算法、决策树、随机森林和提升算法、SVM、聚类算、EM算法、贝叶斯算法、隐马尔科夫模型、LDA主题模型等方面讲解一些机器学习的相关算法以及这些算法的优化过程,这些算法也就是监督算法或者无监督算法。
本阶段主要通过音乐文件分类和金融反欺诈模型训练等项目,帮助大家对于上阶段的机器学习做更深入的巩固,为后续深度学习及数据挖掘提供项目支撑。
深度学习是实现机器学习的技术,同时深度学习也带来了机器学习的许多实际应用,拓展了AI的使用领域,本阶段主要从TensorFlow、BP神经网络、深度学习概述、CNN卷积神经网络、递归神经网、自动编码机,序列到序列网络、生成对抗网络,孪生网络,小样本学习技术等方面讲解深度学习相关算法以,掌握深度学习前沿技术,并根据不同项目选择不同的技术解决方案。针对公司样本不足,采用小样本技术和深度学习技术结合,是项目落地的解决方案。
1)TensorFlow基本应用 | 9)无监督学习之AutoEncoder自动编码器 |
自然语言处理(NLP)是计算机科学领域与人工智能领域中的一个重要方向。它已成为人工智能的核心领域。自然语言处理解决的是“让机器可以理解自然语言”这一到目前为止都还只是人类独有的特权,被誉为人工智能皇冠上的明珠,被广泛应用。本阶段从NLP的字、词和句子全方位多角度的学习NLP,作为NLP的基础核心技术,对NLP为核心的项目,如聊天机器人,合理用药系统,写诗机器人和知识图谱等提供底层技术。通过学习NLP和深度学习技术,掌握NLP具有代表性的前沿技术。
1)词(分词,词性标注)代码实战 | 5)句(句法分析,语义分析)代码实战 |
数字图像处理(Digital Image Processing)是通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。广泛的应用于农牧业、林业、环境、军事、工业和医学等方面,是人工智能和深度学习的重要研究方向。深度学习作为当前机器学习领域最热门的技术之一,已经在图像处理领域获得了应用,并且展现出巨大的前景。本阶段学习了数字图像的基本数据结构和处理技术,到前沿的深度学习处理方法。掌握前沿的ResNet,SSD,Faster RCNN等深度学习模型,对图像分类,目标检测和模式识别等图像处理主要领域达到先进水平。实际工作中很多项目都可以转化为本课程的所学的知识去解决,如行人检测,人脸识别和数字识别。
本阶段重点以项目为导向,通过公安系统人脸识别、图像识别以及图像检索、今日头条CTR广告点击量预估、序列分析系统、聊天机器人等多个项目的讲解,结合实际来进行AI的综合运用。
全面介绍BCC(CDS 、EIP)、BLB、RDS、BOS、VPC等百度云弹性计算服务,介绍百度云的安全防护方案,深入介绍传统架构下如何通过百度云弹性计算服务快速构建更稳定、安全的应用;
认证培训专家将通过深入浅出,理论和实践相结合的课程帮助学员深入掌握百度云弹性计算服务。
1)快速体验百度云服务器BCC的功能全貌 | 11)云数据库RDS的备份与恢复操作体验 |
基于百度云弹性计算服务的基础产品,实现传统IT架构迁移到百度云上的实战,为客户业务上云提升能力,提升客户上云前的信心,上云中和上云后的技术能力。以真实的客户案例,结合设计好的动手实验课提升实战经验,介绍了业务上云的过程、方法、工具以及案例等。
1)基于BCC快速部署LNMP基础环境 | 6)云数据库RDS结合数据传输服务DTS实现数据迁移上云的最佳实践 |
全面介绍使用百度云产品进行应用开发,理解百度云主要产品特性,包括BCC、BOS、RDS、SCS在应用开发中的使用,结合实际应用开发案例全面的介绍整个开发流程和百度云产品使用方法,以提升学员开发技能和了解百度云产品开发特点,根据一天或者两天的课程,提供多个实际动手实验,认证讲师指导实验,真正做到学以致用,为学员实现上云开发保驾护航。
1)基于百度云OpenAPI实现简化版控制台的综合实验 | 2)基于百度云BOS OpenAPI实现简化版的百度网盘 |
百度天工物联平台是“一站式、全托管”的物联网服务平台,依托百度云基础产品与服务,提供全栈物联网核心服务,帮助开发者快速搭建、部署物联网应用。通过全面介绍天工的IoT Hub、IoT Parser、Rule Engine、IoT Device、BML、BMR、OCR和语音识别等产品与服务,解析天工典型的产品架构方案,应用到工业4.0、车联网、能源、物流和智能硬件等各行业解决方案。
1)基于百度云LSS快速搭建音视频直播平台最佳实践 | 4)基于百度云文档服务DOC体验文档存储、转码、分发播放一站式服务体验 |
天智是基于世界领先的百度大脑打造的人工智能平台,提供了语音技术、文字识别、人脸识别、深度学习和自然语言NLP等一系列人工智能产品及解决方案,帮助各行各业的客户打造智能化业务系统。本课程力求对百度人工智能服务平台进行整体、全面的介绍,包括天智平台与解决方案介绍、主要产品(百度语音、人脸识别、文字识别、百度深度学习、百度机器学习 BML、自然语言NLP等)的介绍、客户案例分享等。
1)百度机器学习BML-广告点击率预估 | 4)百度自然语言处理-短文本相似度 |
课程风格通俗易懂,基于真实数据集案例实战。主体课程分成三个大模块(1)python数据分析,(2)机器学习经典算法原理详解,(3)十大经典案例实战。通过python数据科学库numpy,pandas,matplot结合机器学习库scikit-learn完成一些列的机器学习案例。算法课程注重于原理推导与流程解释,结合实例通俗讲解复杂的机器学习算法,并以实战为主,所有课时都结合代码演示。算法与项目相结合,选择经典kaggle项目,从数据预处理开始一步步代码实战带大家快速入门机器学习。旨在帮助同学们快速上手如何使用python库来完整机器学习案例。选择经典案例基于真实数据集,从数据预处理开始到建立机器学习模型以及效果评估,完整的讲解如何使用python及其常用库进行数据的分析和模型的建立。对于每一个面对的挑战,分析解决问题思路以及如何构造合适的模型并且给出合适评估方法。在每一个案例中,同学们可以快速掌握如何使用pandas进行数据的预处理和分析,使用matplotlib进行可视化的展示以及基于scikit-learn库的机器学习模型的建立。
1)Python数据分析与机器学习实战课程简介 | 14)SVD与推荐 |
课程风格通俗易懂,必备原理,形象解读,项目实战缺一不可!主体课程分成四个大模块(1)神经网络必备基础知识点,(2)深度学习模型,(3)深度学习框架Caffe与Tensorflow,(4)深度学习项目实战。 课程首先概述讲解深度学习应用与挑战,由计算机视觉中图像分类任务开始讲解深度学习的常规套路。对于复杂的神经网络,将其展开成多个小模块进行逐一攻破,再挑战整体神经网络架构。对于深度学习模型形象解读卷积神经网络原理,详解其中涉及的每一个参数,对卷积网络架构展开分析与评估,对于现阶段火爆的对抗生成网络以及强化学习给出形象解读,并配合项目实战实际演示效果。 基于框架实战,选择两款深度学习最火框架,Caffe与Tensorflow,首先讲解其基本使用方法,并结合案例演示如何应用框架构造神经网络模型并完成案例任务。 选择经典深度学习项目实战,使用深度学习框架从零开始完成人脸检测,验证码识别,人脸关键点定位,垃圾邮件分类,图像风格转换,AI自己玩游戏等。对于每一个项目实战,从数据预处理开始一步步构建网络模型并展开分析与评估。 课程提供所涉及的所有数据,代码以及PPT,方便大家快速动手进行项目实践!
1)深度学习概述与挑战 | 19)人脸正负样本数据源制作 |
随着科技的发展,现在视频的来源和类型多样性,互联网视频内容充斥着整个网络,如果仅仅是通过翻页的方法来寻找自己想看的视频必然会感到疲劳,现在急需一种能智能推荐的工具,推荐系统通过分析用户对视频的评分分析,对用户的兴趣进行建模,从而预测用户的兴趣并给用户进行推荐。
Python是一种面向对象的解释型计算机程序设计语言,Python具有丰富和强大的库。它常被昵称为胶水语言,而大数据是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,企业面临海量数据的到来,大多选择把数据从本地迁移至云端,云端将成为最大的非结构化数据存储场所。本项目主要以客户咨询为载体,分析客户的群体,分布,旨在挖掘客户的内在需求,帮助企业实现更有价值的营销。
本项目从开发的角度以大数据、PHP技术栈为基础,使用真实商用表结构和脱敏数据,分三步构建商用系统、真实大数据环境、进行推断分析以及呈现结果。 项目课程的完整性、商业性,可以使学者尽可能完整地体会真实的商业需求和业务逻辑。完整的项目过程,使PHP技术栈的同学得以窥见和学到一个完整商业平台项目的搭建方法;真实大数据环境的搭建,使呈现、建立大数据的工具应用技术概念储备;基于大数据平台的分析需求的实现、呈现,将完整的一次大数据技术栈到分析结果的中线,平铺直述,为想要学习大数据并有开发基础的同学点亮新的能力。
本项目结合目前流行的大数据框架,在原有成熟业务的前提下,进行大数据分析处理,真实还原企业应用,让学员身临其境的感受企业大数据开发的整个流程。
项目的业务系统底层主要采用JAVA架构,大数据分析主要采用Hadoop框架,其中包括Kettle实现ETL、SQOOP、Hive、Kibana、HBASE、Spark以及人工智能算法等框架技术;采用真实大数据集群环境的搭建,让学员切身感受企业项目的从0到1的过程。
随着当今个人手机终端的普及、出行人群中手机拥有率和使用率已达到相当高的比例,根据手机信号在真实地理空间的覆盖情况,将手机用户时间序列的手机定位数据,映射至现实地理位置空间位置,即可完整、客观地还原出手机用户的现实活动轨迹,从而挖掘出人口空间分布与活动联系特征信息。
商圈是现代市场中企业市场活动的空间,同时也是商品和服务享用者的区域。商圈划分为目的之一是研究潜在顾客分布,以制定适宜的商业对策。
本项目以实战为基础结合大数据技术Hadoop、.Net技术全栈为基础,采用真实商业数据,分不同环节构建商用系统、真实大数据环境、进行推断分析及呈现数据。
区块链(Blockchain)是分布式数据存储、点对点传输、共识机制、加密算法等计算机技术的新型应用模式。所谓共识机制是区块链系统中实现不同节点之间建立信任、获取权益的数学算法。
区块链是比特币的底层技术,像一个数据库账本,记载所有的交易记录。这项技术也因其安全、便捷的特性逐渐得到了银行与金融业的关注。
程序化交易:又称程式交易,发源于上世纪80年代的美国,其最初的定义是指在纽约股票交易所(NYSE)市场上同时买卖超过15只以上的股票组合;像高盛、摩根士丹利及德意志银行都是在各大交易市场程序化交易的最活跃参与会员。
本课程主要面向意愿从事金融量化交易人员、金融行业从业人员、金融策略开发人员及投资经验丰富而想实现计算机自动下单人员;主要讲解了证券期货程序化实现原理及过程,通过本课程的学习,您可以根据自己的意愿打造属于自己的量化投资交易系统; 本课程主要用到的技术手段有:Python、Pandas、数据分析、数据挖掘机器学习等。
一、程序化交易数据获取与清洗讲解 | |
1)数据的清洗与合成 | 3)技术指标开发讲解 |
二、回测框架搭建讲解 | |
1)回测框架搭建背景及基本流程讲解 | 2)回测框架实现及收益指标讲解 |
三、程序化交易部分实现讲解 | |
1)CTP技术讲解 | 3)程序化交易具体实现讲解 |
本课程主要为广大毕业生或者工作经验较少的学员而设立,主要是为了在职业素养方面给大家提供辅导,为更加顺利走向职场而提供帮助。
为什么有些同学在技能方面过关,却还是给予别人一种书生气的感觉?
为什么简历已经通过了,却还是没有通过HR的面试?
为什么入职后,与同事的沟通总是存在问题?
为什么每天的时间都不够用,无法兼顾生活学习和工作?
为什么学习一段时间后,对工作对职场没有方向感?
为什么遇到事情,别人总是能够保持良好心态游刃有余,而我总是问题百出?
COT课程正是引领大家一起来探索其中的奥秘和方法,让大家一起在学习过程中不断深思和进步,让大家的职场路越走越顺畅!
1)团队协作 |
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。