当前位置:   article > 正文

Stable Diffusion部署教程,开启你的AI绘图之路_commit hash: feee37d75f1b168768014e4634dcb156ee649

commit hash: feee37d75f1b168768014e4634dcb156ee649c05

本文环境

系统:Ubuntu 20.04 64位

内存:32G

环境安装

2.1 安装GPU驱动

在英伟达官网根据显卡型号、操作系统、CUDA等查询驱动版本。官网查询链接https://www.nvidia.com/Download/index.aspx?lang=en-us
注意这里的CUDA版本,如未安装CUDA可以先选择一个版本,稍后再安装CUDA.

image.png

点击Search

image.png


如上图,查询到合适的版本为510. 然后可以使用apt安装对应驱动版本,使用apt安装更方便一些。

  1. # 安装510版本驱动
  2. sudo apt install nvidia-driver-510
  3. # 查看驱动信息
  4. nvidia-smi

 当然你也可以使用官网下载的run文件进行安装

sudo chmod +x NVIDIA-Linux-x86_64-510.108.03.run

安装

sudo ./NVIDIA-Linux-x86_64-510.108.03.run

安装步骤操作之后就可以完成安装了

输入nvidia-smi查看显卡

  1. chen@chen:~$ nvidia-smi
  2. Sat Jun 22 08:50:27 2024
  3. +-----------------------------------------------------------------------------+
  4. | NVIDIA-SMI 510.39.01 Driver Version: 510.39.01 CUDA Version: 11.6 |
  5. |-------------------------------+----------------------+----------------------+
  6. | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
  7. | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
  8. | | | MIG M. |
  9. |===============================+======================+======================|
  10. | 0 Tesla M40 On | 00000000:01:00.0 Off | 0 |
  11. | N/A 53C P8 17W / 250W | 3MiB / 11520MiB | 0% Default |
  12. | | | N/A |
  13. +-------------------------------+----------------------+----------------------+
  14. +-----------------------------------------------------------------------------+
  15. | Processes: |
  16. | GPU GI CI PID Type Process name GPU Memory |
  17. | ID ID Usage |
  18. |=============================================================================|
  19. | No running processes found |
  20. +-----------------------------------------------------------------------------+

安装CUDA

访问英伟达开发者网站先选择CUDA版本(版本要对应2.1中GPU驱动支持的CUDA版本),再根据操作系统选择对应CUDA安装命令,访问链接https://developer.nvidia.com/cuda-toolkit-archive

image.png

如上面安装确定所选择驱动对应的CUDA版本为11.6,根据安装命令安装, 以下命令适用Ubuntu 20.04 x86_64, GPU驱动510版本

  1. wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/cuda-ubuntu2004.pin
  2. sudo mv cuda-ubuntu2004.pin /etc/apt/preferences.d/cuda-repository-pin-600
  3. wget https://developer.download.nvidia.com/compute/cuda/11.6.2/local_installers/cuda-repo-ubuntu2004-11-6-local_11.6.2-510.47.03-1_amd64.deb
  4. sudo dpkg -i cuda-repo-ubuntu2004-11-6-local_11.6.2-510.47.03-1_amd64.deb
  5. sudo apt-key add /var/cuda-repo-ubuntu2004-11-6-local/7fa2af80.pub
  6. sudo apt-get update
  7. sudo apt-get -y install cuda

2.3 安装Python 3.10

Stable Diffusion WebUI目前最低支持Python 3.10,所以直接安装3.10版本,安装命令:

  1. apt install software-properties-common
  2. add-apt-repository ppa:deadsnakes/ppa
  3. apt update
  4. apt install python3.10
  5. python3.10 --verison

PIP设置国内源,由于默认源在国外,所以安装可能经常会出现timeout等问题,使用国内源可以很大程度避免下载包timeout的情况。将如下内容复制到文件~/.pip/pip.conf当中,如没有该文件,先创建touch ~/.pip/pip.conf

  1. [global]
  2. index-url = https://pypi.tuna.tsinghua.edu.cn/simple
  3. [install]
  4. trusted-host = https://pypi.tuna.tsinghua.edu.cn

但是有一种比较推荐的方法就是使用 Anaconda

 安装Anaconda

非常推荐使用Anaconda。Anaconda可以便捷获取包且对包能够进行管理,同时对Python环境可以统一管理的发行版本。安装命令也很简单:

  1. wget https://repo.anaconda.com/archive/Anaconda3-5.3.1-Linux-x86_64.sh
  2. bash ./Anaconda3-5.3.1-Linux-x86_64.sh

安装步骤安装Anaconda,最后一部选择是否要安装vscode可以选N

建Python3.10.9环境,并使用该环境

  1. conda create -n python3.10.9 python==3.10.9
  2. conda activate python3.10.9

2.5 安装PyTorch

首先在PyTorch官网查询对应CUDA版本的Torch,如上述章节2.2中CUDA 11.6需要安装pytorch1.13.1

  1. # 使用conda安装,两种安装方式二选一
  2. conda install pytorch==1.13.1 torchvision==0.14.1 torchaudio==0.13.1 pytorch-cuda=11.6 -c pytorch -c nvidia
  3. # 使用pip安装,两种安装方式二选一
  4. pip install torch==1.13.1+cu116 torchvision==0.14.1+cu116 torchaudio==0.13.1 --extra-index-url https://download.pytorch.org/whl/cu116

我是使用pip安装的

三、部署Stable Diffusion WebUI

3.1 下载stable-diffusion-webui

注意首先激活Python3.10环境:

conda activate python3.10.9

然后下载stable-diffusion-webui

sudo git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git

如果遇到项目clone不下来可以使用我下面的加速地址

sudo git clone https://github.moeyy.xyz/https://github.com/AUTOMATIC1111/stable-diffusion-webui.git

安装依赖

cd到stable-diffusion-webui目录安装相应的依赖,如有访问网络超时、失败等,注意按照章节2.3中设置国内源,如果再次失败,重试几次一般都可完成安装。

  1. cd stable-diffusion-webui
  2. pip install -r requirements_versions.txt
  3. pip install -r requirements.txt

启动stable-diffusion-webui

安装完成后,执行如下启动命令:

python launch.py --listen --enable-insecure-extension-access

这一步骤会下载一些常用模型,如果遇到下载失败,根据报错提示在huggingface.co下载模型放到对应目录,如下载stable-diffusion-v1-5模型,搜索找到https://huggingface.co/runwayml/stable-diffusion-v1-5/tree/main

每次启动都需要输入一长串命令,比较麻烦,可以写一个shell

sudo vim start.sh

里面输入

sudo /home/chen/anaconda3/envs/python3.10.9/bin/python launch.py --listen --enable-insecure-extension-access

/home/chen是当前我的用户目录,anaconda3创建的虚拟环境是python3.10.9 就写这个python路径anaconda3/envs/python3.10.9

sudo chmod +x start.sh

启动项目

  1. chen@chen:/data/stable-diffusion-webui$ ./start.sh
  2. [sudo] password for chen:
  3. Sorry, try again.
  4. [sudo] password for chen:
  5. Python 3.10.9 (main, Mar 8 2023, 10:47:38) [GCC 11.2.0]
  6. Version: v1.9.4
  7. Commit hash: feee37d75f1b168768014e4634dcb156ee649c05
  8. Launching Web UI with arguments: --listen --enable-insecure-extension-access
  9. no module 'xformers'. Processing without...
  10. No SDP backend available, likely because you are running in pytorch versions < 2.0. In fact, you are using PyTorch 1.13.1+cu116. You might want to consider upgrading.
  11. no module 'xformers'. Processing without...
  12. No module 'xformers'. Proceeding without it.
  13. ==============================================================================
  14. You are running torch 1.13.1+cu116.
  15. The program is tested to work with torch 2.1.2.
  16. To reinstall the desired version, run with commandline flag --reinstall-torch.
  17. Beware that this will cause a lot of large files to be downloaded, as well as
  18. there are reports of issues with training tab on the latest version.
  19. Use --skip-version-check commandline argument to disable this check.
  20. ==============================================================================
  21. Loading weights [63d370e256] from /data/stable-diffusion-webui/models/Stable-diffusion/a31_style.safetensors
  22. Running on local URL: http://0.0.0.0:7860
  23. To create a public link, set `share=True` in `launch()`.
  24. Startup time: 14.5s (prepare environment: 2.3s, import torch: 4.9s, import gradio: 1.3s, setup paths: 1.3s, initialize shared: 0.3s, other imports: 1.3s, list SD models: 0.2s, load scripts: 1.5s, create ui: 0.8s, gradio launch: 0.6s).
  25. Creating model from config: /data/stable-diffusion-webui/configs/v1-inference.yaml
  26. /home/chen/anaconda3/envs/python3.10.9/lib/python3.10/site-packages/huggingface_hub/file_download.py:1132: FutureWarning: `resume_download` is deprecated and will be removed in version 1.0.0. Downloads always resume when possible. If you want to force a new download, use `force_download=True`.
  27. warnings.warn(

访问服务器ip:7860

随便画一张图试试

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/人工智能uu/article/detail/925534
推荐阅读
相关标签
  

闽ICP备14008679号