当前位置:   article > 正文

吴恩达机器学习笔记十三 多分类问题(multiclass) Softmax 神经网络的softmax输出 softmax改进

吴恩达机器学习笔记十三 多分类问题(multiclass) Softmax 神经网络的softmax输出 softmax改进

多分类问题指可能会有多于两个的输出标签,而不只是0或1的问题。

Softmax算法是逻辑回归的一种推广。

例如 y 有四种可能的取值时:

成本函数

例如有十种类别的输出,此时称这个神经网络有一个softmax输出层或上层是softmax层

softmax layer有时也称softmax activition function.

代码实现上图所示的神经网络:

其中 SparseCategoricalCrossentopy 是 稀疏分类交叉熵损失函数。sparse(稀疏)指 y 的每个数字都是类别之一.下面的代码能用但不建议,有更好的。

softmax改进

计算2/10000,两种不同的方式得到的结果不同,第二种更准确。

如果在程序中指定表达式而不是使用中间变量的话,会更加精确。

声明:本文内容由网友自发贡献,转载请注明出处:【wpsshop博客】
推荐阅读
相关标签
  

闽ICP备14008679号