当前位置:   article > 正文

数据结构篇九:AVL树

数据结构篇九:AVL树

前言

  在二叉搜索树中我们发现这种情况下查询效率依旧很低下:
在这里插入图片描述
  如果插入的顺序有序,那么就会变成成单支树,二叉搜索树的性能就失去了,而AVL树和红黑树就是为了解决这个问题而发明的。本章主要讲解的是AVL树,下一篇文章将会讲解红黑树。

1. AVL树的概念

  二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查找元素相当于在顺序表中搜索元素,效率低下。因此,两位俄罗斯的数学家G.M.Adelson-Velskii和E.M.Landis在1962年发明了一种解决上述问题的方法:当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的绝对值不超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均搜索长度
一棵AVL树或者是空树,或者是具有以下性质的二叉搜索树:

  • 它的左右子树都是AVL树
  • 左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)(平衡因子:某一结点的右子树的高度减左子树的高度)
    在这里插入图片描述
      如果一棵二叉搜索树是高度平衡的,它就是AVL树。如果它有n个结点,其高度可保持在 O ( l o g 2 n ) O(log_2 n) O(log2n),搜索时间复杂度O( l o g 2 n log_2 n log2n)。
      AVL树的解决方法其实是将树平衡因子超过1的树进行旋转,我们来看个例子:
    在这里插入图片描述
      这样就将一个平衡因子为了2的树变成了平衡因子为0的树,如此就完美的解决了单支树的问题。

2. AVL树节点的定义

template<class K,class V>
struct AVLTreeNode
{
	AVLTreeNode<K, V>* _left;
	AVLTreeNode<K, V>* _right;
	AVLTreeNode<K, V>* _parent;
	pair<K, V> _kv;
	int _bf;

	AVLTreeNode(const pair<K,V>& kv)
		:_left(nullptr)
		,_right(nullptr)
		,_parent(nullptr)
		,_kv(kv)
		,_bf(0)
	{}
};
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17

  AVL树我们采用的是三叉链,相比较二叉链多存储了父亲节点,它会更好的帮助我们进行调整节点的操作。

3. AVL树的插入

  AVL树就是在二叉搜索树的基础上引入了平衡因子,因此AVL树也可以看成是二叉搜索树。那么AVL树的插入过程可以分为两步:

  1. 按照二叉搜索树的方式插入新节点
  2. 调整节点的平衡因子
  1. 先按照二叉搜索树的规则将节点插入到AVL树中
  2. 新节点插入后,AVL树的平衡性可能会遭到破坏,此时就需要更新平衡因子,并检测是否破坏了AVL树的平衡性cur插入后,parent的平衡因子一定需要调整,在插入之前,parent 平衡因子分为三种情况:-1,0, 1, 分以下两种情况:
    1. 如果cur插入到parent的左侧,只需给parent的平衡因子-1即可
    2. 如果cur插入到parent的右侧,只需给parent的平衡因子+1即可

此时:parent的平衡因子可能有三种情况:0,正负1, 正负2

  1. 如果parent的平衡因子为0,说明插入之前parent的平衡因子为正负1,插入后被调整成0,此时满足AVL树的性质,插入成功
  2. 如果parent的平衡因子为正负1,说明插入前parent的平衡因子一定为0,插入后被更新成正负1,此时以parent为根的树的高度增加,需要继续向上更新
  3. 如果parent的平衡因子为正负2,则parent的平衡因子违反平衡树的性质,需要对其进行旋转处理
bool insert(const pair<K,V>& kv)
	{
		if (_root == nullptr)
		{
			_root = new Node(kv);
			return true;
		}

		Node* parent = nullptr;
		Node* cur = _root;

		while (cur)
		{
			if (kv.first > cur->_kv.first)
			{
				parent = cur;
				cur = cur->_right;
			}
			else if(kv.first < cur->_kv.first)
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				return false;
			}
		}

		cur = new Node(kv);
		if (cur->_kv.first < parent->_kv.first)
		{
			parent->_left = cur;
			cur->_parent = parent;
		}
		else
		{
			parent->_right = cur;
			cur->_parent = parent;
		}

		//更新平衡因子
		while (parent)
		{
			if (cur == parent->_left)
			{
				parent->_bf--;
			}
			else
			{
				parent->_bf++;
			}
			
			// 更新后检测双亲的平衡因子
			if (parent->_bf == 0)
			{
				break;
			}
			else if (parent->_bf == 1 || parent->_bf == -1)
			{
				// 插入前双亲的平衡因子是0,插入后双亲的平衡因为为1 或者 -1 ,说明以双亲为根的二叉树的高度增加了一层,因此需要继续向上调整
				cur = parent;
				parent = parent->_parent;
			}
			else if (parent->_bf == 2 || parent->_bf == -2)
			{
				// 双亲的平衡因子为正负2,违反了AVL树的平衡性,需要对以pParent为根的树进行旋转处理
				//…………
			}
			
		}

		return true;
	}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74

  调整一共分为四种情况,分别为右单旋、左单旋、右左单旋,左右单旋,我们分别来看。

3.1 新节点插入较高左子树的左侧—左左:右单旋

在这里插入图片描述

  上图在插入前,AVL树是平衡的,新节点插入到10的左子树(注意:此处不是左孩子)中,10左子树增加了一层,导致以20为根的二叉树不平衡,要让20平衡,只能将20左子树的高度减少一层,右子树增加一层,即将左子树往上提,这样20转下来,因为20比10大,只能将其放在10的右子树,而如果10有右子树,右子树根的值一定大于10,小于20,只能将其放在20的左子树,旋转完成后,更新节点的平衡因子即可。在旋转过程中,有以下几种情况需要考虑:

  1. 10节点的右孩子可能存在,也可能不存在
  2. 20可能是根节点,也可能是子树
    如果是根节点,旋转完成后,要更新根节点
    如果是子树,可能是某个节点的左子树,也可能是右子树

  a、b、c分别代表着各种情况,高度为0(也就是为空),高度为1,(为一个节点),高度为2(见图,可以为图中的任意一种),高度为3……等等。
在这里插入图片描述
  此处是画出了一个抽象图来讲解,可以映射为各种各样的情况。注意:我们是每插入一个节点就会进行平衡,因此a、b、c一定也为AVL树
  旋转方式:我们将平衡因子为正负2的节点命名为parent,它的左子树命名为subL,subL的右子树命名为subLR,旋转时只需要调整这个几个节点就可以了。
在这里插入图片描述

  旋转就是以平衡因子为正负2的节点为基础进行的。将subLR链接到parent的左,再将parent链接到subL的右

void RotateR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;
		Node* ppNode = parent->_parent;

		parent->_left = subLR;
		if (subLR)
			subLR->_parent = parent;

		subL->_right = parent;
		parent->_parent = subL;

		if (parent == _root)
		{
			_root = subL;
			subL->_parent = nullptr;
		}
		else
		{
			if (ppNode->_left == parent)
			{
				ppNode->_left = subL;
			}
			else
			{
				ppNode->_right = subL;
			}
			subL->_parent = ppNode;
		}
		parent->_bf = subL->_bf = 0;
	}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32

  但是subLR有可能为空,也就是当a、b、c高度为0时,subLR就会出现为空的情况,因此在使用时需要判断一下。
在这里插入图片描述
  但是要注意:我们使用的是三叉链,在进行链接时是需要进行相互链接的,尤其是需要注意parent,如果它不是根节点的话,说明parent的上面还有节点,因此在链接时不能把此处的链接给忘记了。总结一共存在三处链接:第一处是subLR链接到parent的左,第二处链接是将parent链接到subL的右,第三处链接是将subL链接到parent的父亲节点
  旋转完成后还需要调整平衡因子,根据我们画出的图可以看出,在这种调整情况下,最后的平衡因子都变成了0。
在这里插入图片描述

3.2 新节点插入较高右子树的右侧—右右:左单旋

  左单旋与右单旋相差无几,仅仅只是调换了一下方向:
在这里插入图片描述
  具体情况与右单旋一模一样,在此处我就不进行详细讲解了。

void RotateL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;

		Node* ppNode = parent->_parent;

		parent->_right = subRL;
		if (subRL)
			subRL->_parent = parent;

		subR->_left = parent;
		parent->_parent = subR;
		
		if (parent == _root)
		{
			_root = subR;
			subR->_parent = nullptr;
		}
		else
		{
			if (ppNode->_left == parent)
			{
				ppNode->_left = subR;
			}
			else
			{
				ppNode->_right = subR;
			}
			subR->_parent = ppNode;
		}

		parent->_bf = subR->_bf = 0;
	}

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35

3.3 新节点插入较高左子树的右侧—左右:先左单旋再右单旋

在这里插入图片描述

  在这种情况下,我们发现对节点20无论是左单旋还是右单旋都无法减少平衡因子,因此就出现了双旋的情况,我们先对节点10进行左单旋。
在这里插入图片描述

  将其变成了只有左边高,这样就转化成了右单旋的问题。
在这里插入图片描述

  再对节点20进行右单旋,如此下来我们就发现它们的平衡因子减小了。
在这里插入图片描述

  左右双旋我们可以直接复用前面的代码就可以了,但是需要注意平衡因子的调节,新插入节点的位置可能是subLR,也可能是subLR的左,也可能是subLR的右,插入位置不同,平衡因子的调节就不同,大家可以自行画图来观察。

void RotateLR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;
		int bf = subLR->_bf;

		RotateL(subL);
		RotateR(parent);

		if (bf == 0)
		{
			parent->_bf = subL->_bf = subLR->_bf = 0;
		}
		else if (bf == 1)
		{
			subL->_bf = -1;
			parent->_bf = subLR->_bf = 0;
		}
		else if(bf = -1)
		{
			parent->_bf = 1;
			subLR->_bf = subL->_bf = 0;
		}
		else
		{
			assert(false);
		}
	}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28

3.4 新节点插入较高右子树的左侧—右左:先右单旋再左单旋

  具体的过程与左右双旋情况一致,我这里找了一份图,大家对左右双旋理解透彻了相信对于右左双旋也不在话下,我就偷个懒不做详细解释了。
在这里插入图片描述
  这里的平衡因子的调节同样与插入位置有关,可以多画几种情况来观察。

	void RotateRL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;

		int bf = subRL->_bf;

		RotateR(subR);
		RotateL(parent);

		if (bf == 0)
		{
			parent->_bf = subR->_bf = subRL->_bf = 0;
		}
		else if(bf == 1)
		{
			parent->_bf = -1;
			subR->_bf = subRL->_bf = 0;
		}
		else if (bf == -1)
		{
			subR->_bf = 1;
			subRL->_bf = parent->_bf = 0;
		}
		else
		{
			assert(false);
		}
	}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29

总结:
假如以parent为根的子树不平衡,即parent的平衡因子为2或者-2,分以下情况考虑

  1. parent的平衡因子为2,说明parent的右子树高,设parent的右子树的根为subR

当subR的平衡因子为1时,执行左单旋
当subR的平衡因子为-1时,执行右左双旋

  1. parent的平衡因子为-2,说明parent的左子树高,设parent的左子树的根为subL

当subL的平衡因子为-1是,执行右单旋
当subL的平衡因子为1时,执行左右双旋

  旋转完成后,原parent为根的子树个高度降低,已经平衡,不需要再向上更新。

4. AVL树的验证

  AVL树是在二叉搜索树的基础上加入了平衡性的限制,因此要验证AVL树,可以分两步:

  1. 验证其为二叉搜索树

如果中序遍历可得到一个有序的序列,就说明为二叉搜索树

  1. 验证其为平衡树

每个节点子树高度差的绝对值不超过1(注意节点中如果没有平衡因子)
节点的平衡因子是否计算正确

4.1 验证其为二叉搜索树

  使用中序进行遍历即可。

void InOrder()
{
	_InOrder(_root);
	cout << endl;
}
void _InOrder(Node* root)
{
	if (root == nullptr)
		return;

	_InOrder(root->_left);
	cout << root->_kv.first << " ";
	_InOrder(root->_right);
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14

4.2 验证其为平衡树

  因此还需要写一个计算高度的函数来辅助检查,相信有了前面二叉树的学习,这部分对大家构不成威胁。

int _Hight(Node* _root)
{
	if (_root == nullptr)
		return 0;

	int LeftHight = _Hight(_root->_left);
	int RightHight = _Hight(_root->_right);

	return LeftHight > RightHight ? LeftHight + 1 : RightHight + 1;
}
bool _IsBalance(Node* _root)
{
	if (_root == nullptr)
		return true;

	int LeftHight = _Hight(_root->_left);
	int RightHight = _Hight(_root->_right);
	if (RightHight - LeftHight != _root->_bf)
	{
		cout << _root->_kv.first << "平衡因子异常:" << _root->_bf<< endl;
		return false;
	}

	return abs(LeftHight - RightHight) < 2
		&& _IsBalance(_root->_left)
		&& _IsBalance(_root->_right);
}

bool IsBalance()
{
	return _IsBalance(_root);
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32

5. AVL树的删除

  因为AVL树也是二叉搜索树,可按照二叉搜索树的方式将节点删除,然后再更新平衡因子,只不错与删除不同的时,删除节点后的平衡因子更新,最差情况下一直要调整到根节点的位置。
  删除的情况更多也更为复杂,具体实现大家们可参考《算法导论》或《数据结构-用面向对象方法与C++描述》殷人昆版。

6. AVL树的性能

  AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这样可以保证查询时高效的时间复杂度,即 l o g 2 ( N ) log_2 (N) log2(N)。但是如果要对AVL树做一些结构修改的操作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时,有可能一直要让旋转持续到根的位置。因此:如果需要一种查询高效且有序的数据结构,而且数据的个数为静态的(即不会改变),可以考虑AVL树,但一个结构经常修改,就不太适合。

7. 代码实现

7.1 AVL.h

#pragma once
#include<iostream>
#include<vector>
#include<assert.h>
using namespace std;

template<class K,class V>
struct AVLTreeNode
{
	AVLTreeNode<K, V>* _left;
	AVLTreeNode<K, V>* _right;
	AVLTreeNode<K, V>* _parent;
	pair<K, V> _kv;
	int _bf;

	AVLTreeNode(const pair<K,V>& kv)
		:_left(nullptr)
		,_right(nullptr)
		,_parent(nullptr)
		,_kv(kv)
		,_bf(0)
	{}
};

template<class K,class V>
class AVLTree
{
	typedef AVLTreeNode<K, V> Node;
public:
	bool insert(const pair<K,V>& kv)
	{
		if (_root == nullptr)
		{
			_root = new Node(kv);
			return true;
		}

		Node* parent = nullptr;
		Node* cur = _root;

		while (cur)
		{
			if (kv.first > cur->_kv.first)
			{
				parent = cur;
				cur = cur->_right;
			}
			else if(kv.first < cur->_kv.first)
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				return false;
			}
		}

		cur = new Node(kv);
		if (cur->_kv.first < parent->_kv.first)
		{
			parent->_left = cur;
			cur->_parent = parent;
		}
		else
		{
			parent->_right = cur;
			cur->_parent = parent;
		}

		//平衡因子
		while (parent)
		{
			if (cur == parent->_left)
			{
				parent->_bf--;
			}
			else
			{
				parent->_bf++;
			}

			if (parent->_bf == 0)
			{
				break;
			}
			else if (parent->_bf == 1 || parent->_bf == -1)
			{
				cur = parent;
				parent = parent->_parent;
			}
			else if (parent->_bf == 2 || parent->_bf == -2)
			{
				//旋转
				if (parent->_bf == -2 && cur->_bf == -1)
				{
					RotateR(parent);
				}
				else if (parent->_bf == 2 && cur->_bf == 1)
				{
					RotateL(parent);
				}
				else if (parent->_bf == -2 && cur->_bf == 1)
				{
					RotateLR(parent);
				}
				else if (parent->_bf == 2 && cur->_bf == -1)
				{
					RotateRL(parent);
				}
				// 1、旋转让这颗子树平衡了
				// 2、旋转降低了这颗子树的高度,恢复到跟插入前一样的高度,所以对上一层没有影响,不用继续更新
				break;
			}
			else
			{
				assert(false);
			}
		}

		return true;
	}

	void RotateL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;

		Node* ppNode = parent->_parent;

		parent->_right = subRL;
		if (subRL)
			subRL->_parent = parent;

		subR->_left = parent;
		parent->_parent = subR;
		
		if (parent == _root)
		{
			_root = subR;
			subR->_parent = nullptr;
		}
		else
		{
			if (ppNode->_left == parent)
			{
				ppNode->_left = subR;
			}
			else
			{
				ppNode->_right = subR;
			}
			subR->_parent = ppNode;
		}

		parent->_bf = subR->_bf = 0;
	}

	void RotateR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;
		Node* ppNode = parent->_parent;

		parent->_left = subLR;
		if (subLR)
			subLR->_parent = parent;

		subL->_right = parent;
		parent->_parent = subL;

		if (parent == _root)
		{
			_root = subL;
			subL->_parent = nullptr;
		}
		else
		{
			if (ppNode->_left == parent)
			{
				ppNode->_left = subL;
			}
			else
			{
				ppNode->_right = subL;
			}
			subL->_parent = ppNode;
		}
		parent->_bf = subL->_bf = 0;
	}

	void RotateRL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;

		int bf = subRL->_bf;

		RotateR(subR);
		RotateL(parent);

		if (bf == 0)
		{
			parent->_bf = subR->_bf = subRL->_bf = 0;
		}
		else if(bf == 1)
		{
			parent->_bf = -1;
			subR->_bf = subRL->_bf = 0;
		}
		else if (bf == -1)
		{
			subR->_bf = 1;
			subRL->_bf = parent->_bf = 0;
		}
		else
		{
			assert(false);
		}
	}

	void RotateLR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;
		int bf = subLR->_bf;

		RotateL(subL);
		RotateR(parent);

		if (bf == 0)
		{
			parent->_bf = subL->_bf = subLR->_bf = 0;
		}
		else if (bf == 1)
		{
			subL->_bf = -1;
			parent->_bf = subLR->_bf = 0;
		}
		else if(bf = -1)
		{
			parent->_bf = 1;
			subLR->_bf = subL->_bf = 0;
		}
		else
		{
			assert(false);
		}
	}

	int _Hight(Node* _root)
	{
		if (_root == nullptr)
			return 0;

		int LeftHight = _Hight(_root->_left);
		int RightHight = _Hight(_root->_right);

		return LeftHight > RightHight ? LeftHight + 1 : RightHight + 1;
	}
	bool _IsBalance(Node* _root)
	{
		if (_root == nullptr)
			return true;

		int LeftHight = _Hight(_root->_left);
		int RightHight = _Hight(_root->_right);
		if (RightHight - LeftHight != _root->_bf)
		{
			cout << _root->_kv.first << "平衡因子异常:" << _root->_bf<< endl;
			return false;
		}

		return abs(LeftHight - RightHight) < 2
			&& _IsBalance(_root->_left)
			&& _IsBalance(_root->_right);
	}

	bool IsBalance()
	{
		return _IsBalance(_root);
	}

	void InOrder()
	{
		_InOrder(_root);
		cout << endl;
	}

private:
	void _InOrder(Node* root)
	{
		if (root == nullptr)
			return;

		_InOrder(root->_left);
		cout << root->_kv.first << " ";
		_InOrder(root->_right);
	}

	Node* _root = nullptr;
};
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228
  • 229
  • 230
  • 231
  • 232
  • 233
  • 234
  • 235
  • 236
  • 237
  • 238
  • 239
  • 240
  • 241
  • 242
  • 243
  • 244
  • 245
  • 246
  • 247
  • 248
  • 249
  • 250
  • 251
  • 252
  • 253
  • 254
  • 255
  • 256
  • 257
  • 258
  • 259
  • 260
  • 261
  • 262
  • 263
  • 264
  • 265
  • 266
  • 267
  • 268
  • 269
  • 270
  • 271
  • 272
  • 273
  • 274
  • 275
  • 276
  • 277
  • 278
  • 279
  • 280
  • 281
  • 282
  • 283
  • 284
  • 285
  • 286
  • 287
  • 288
  • 289
  • 290
  • 291
  • 292
  • 293
  • 294
  • 295
  • 296
  • 297
  • 298
  • 299
  • 300
  • 301
  • 302

7.2 Test.cpp

#define _CRT_SECURE_NO_WARNINGS 1
#include"AVL.h"

void Test1()
{
	int a[] = { 16, 3, 7, 11, 9, 26, 18, 14, 15 };
	AVLTree<int, int> t;
	for (auto e : a)
	{
		t.insert(make_pair(e, e));
	}

	t.InOrder();
	cout << t.IsBalance() << endl;
}


void Test2()
{
	const int N = 100;
	vector<int> v;
	v.reserve(N);
	srand(time(0));

	for (int i = 0; i < N; i++)
	{
		v.push_back(rand());
	}

	AVLTree<int, int> t;
	for (auto e : v)
	{
		t.insert(make_pair(e, e));
		cout << "insert:" << e << "->" << t.IsBalance() << endl;
	}

	cout << t.IsBalance() << endl;
}

int main()
{
	//Test1();
	Test2();
	return 0;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45

8. 总结

  AVL树最主要的是如何进行旋转,此部分比较难以理解,大家可以通过多画图来反复进行学习。希望大家都能有所收获。
  如果大家发现有什么错误的地方,可以私信或者评论区指出喔。我会继续深入学习C++,希望能与大家共同进步,那么本期就到此结束,让我们下期再见!!觉得不错可以点个赞以示鼓励!!

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/从前慢现在也慢/article/detail/208907
推荐阅读
相关标签
  

闽ICP备14008679号