当前位置:   article > 正文

深度学习卷积神经图像分类实现鸟类识别含训练代码和鸟类数据集(支持repVGG,googlenet, resnet, inception, mobilenet)

鸟类数据集

Pytorch实现鸟类识别(含训练代码和鸟类数据集)

目录

Pytorch实现鸟类识别(含训练代码和鸟类数据集)

1. 前言

2. 鸟类数据集

(1)Bird-Dataset26

(2)自定义数据集

3. 鸟类分类识别模型训练

(1)项目安装

(2)准备Train和Test数据

(3)配置文件:​config.yaml​

(4)开始训练

(5)可视化训练过程

(6)一些优化建议

(7) 一些运行错误处理方法:

4. 鸟类分类识别模型测试效果

5.项目源码下载

设计项目案例演示地址: 链接

毕业设计代做选题指导项目方向涵盖:

基于Python,MATLAB设计,OpenCV,,CNN,机器学习,R-CNN,GCN,LSTM,SVM,BP神经网络,数字识别,贝叶斯,逻辑回
归,卷积神经网络等算法的中文文本分类.车牌识别,知识图谱,数字图像处理,手势识别,边缘检测,图像增强,
图像分类,图像分割,色彩增强,低照度。缺陷检测,病害识别,图像缺陷检测,裂缝识别,
交通标志识别,夜间车牌识别,人数统计,火焰烟雾火,车道线识别,人脸识别等系
  • 1
  • 2
  • 3
  • 4

1. 前言

本项目将采用深度学习的方法,搭建一个鸟类分类识别的训练和测试项目,实现一个简单的鸟类图像分类识别系统。项目收集了26种鸟类品种Bird-Dataset26,约有20000+图片数据;在鸟类数据集Bird-Dataset26上,基于ResNet18的鸟类分类识别,训练集的Accuracy在98%左右,测试集的Accuracy在95%左右,骨干网络,可支持googlenet, resnet[18,34,50], inception_v3,mobilenet_v2等常用模型。
模型input sizeTest准确率****mobilenet_v2224×22495.0000%googlenet224×22496.1538%resnet18224×22495.9615%

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

2. 鸟类数据集

(1)Bird-Dataset26

项目收集了多个鸟类品种的数据集,命名为Bird-Dataset26,该数据集共收集了26 种鸟类品种,包含常见的鹰,孔雀等鸟种类,总数据超过2万张图片,平均每个种类有约有700+的图片;数据分为train和test,其中训练集train共有20000+张鸟类图像,测试集test共有500+张鸟类图像,可满足深度学习鸟类品种分类识别的需求。

Bird-Dataset26,部分数据是通过网上爬取的,存在部分错误的图片,尽管鄙人已经清洗一部分了,但还是建议你,训练前,再次清洗数据集,不然会影响模型的识别的准确率。鸟类图片数据,可以在这里检索:中国观鸟记录中心

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Bird-Dataset26包含的26种鸟类品种,类别名称分别是:

八色鸫
白鹡鸰
白胸翡翠
白胸苦恶鸟
斑头绿拟啄木
赤颈鹤
赤麻鸭
赤胸拟啄木鸟
丛林鸫鹛
戴胜鸟
凤头麦鸡
灰鹡鸰
灰犀鸟
家八哥
家鸦
孔雀
蓝胸佛法僧
绿喉蜂虎
牛背鹭
普通翠鸟
普通缝叶莺
普通朱雀
肉垂麦鸡
山鹡鸰

棕腹树鹊

(2)自定义数据集

如果需要新增类别数据,或者需要自定数据集进行训练,可以如下进行处理:

  • Train和Test数据集,要求相同类别的图片,放在同一个文件夹下;且子目录文件夹命名为类别名称,如

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

  • 类别文件:一行一个列表:​class_name.txt​ (最后一行,请多回车一行)
A
B
C
D

  • 1
  • 2
  • 3
  • 4
  • 5
  • 修改配置文件的数据路径:​config.yaml​
train_data: # 可添加多个数据集
  - 'data/dataset/train1' 
  - 'data/dataset/train2'
test_data: 'data/dataset/test'
class_name: 'data/dataset/class_name.txt'
...
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

3. 鸟类分类识别模型训练

本项目以Bird-Dataset26鸟类数据集为训练和测试样本。

(1)项目安装

整套工程基本框架结构如下:

.
├── classifier                 # 训练模型相关工具
├── configs                    # 训练配置文件
├── data                       # 训练数据
├── libs           
├── demo.py              # 模型推理demo
├── README.md            # 项目工程说明文档
├── requirements.txt     # 项目相关依赖包
└── train.py             # 训练文件
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

项目依赖python包请参考requirements.txt,使用pip安装即可:

numpy==1.16.3
matplotlib==3.1.0
Pillow==6.0.0
easydict==1.9
opencv-contrib-python==4.5.2.52
opencv-python==4.5.1.48
pandas==1.1.5
PyYAML==5.3.1
scikit-image==0.17.2
scikit-learn==0.24.0
scipy==1.5.4
seaborn==0.11.2
tensorboard==2.5.0
tensorboardX==2.1
torch==1.7.1+cu110
torchvision==0.8.2+cu110
tqdm==4.55.1
xmltodict==0.12.0
basetrainer
pybaseutils==0.6.5
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
(2)准备Train和Test数据

下载鸟类品种分类数据集,Train和Test数据集,要求相同类别的图片,放在同一个文件夹下;且子目录文件夹命名为类别名称。

数据增强方式主要采用:** 随机裁剪,随机翻转,随机旋转,颜色变换**等处理方式

import numbers
import random
import PIL.Image as Image
import numpy as np
from torchvision import transforms


def image_transform(input_size, rgb_mean=[0.5, 0.5, 0.5], rgb_std=[0.5, 0.5, 0.5], trans_type="train"):
    """
    不推荐使用:RandomResizedCrop(input_size), # bug:目标容易被crop掉
    :param input_size: [w,h]
    :param rgb_mean:
    :param rgb_std:
    :param trans_type:
    :return::
    """
    if trans_type == "train":
        transform = transforms.Compose([
            transforms.Resize([int(128 * input_size[1] / 112), int(128 * input_size[0] / 112)]),
            transforms.RandomHorizontalFlip(),  # 随机左右翻转
            # transforms.RandomVerticalFlip(), # 随机上下翻转
            transforms.ColorJitter(brightness=0.5, contrast=0.5, saturation=0.5, hue=0.1),
            transforms.RandomRotation(degrees=5),
            transforms.RandomCrop([input_size[1], input_size[0]]),
            transforms.ToTensor(),
            transforms.Normalize(mean=rgb_mean, std=rgb_std),
        ])
    elif trans_type == "val" or trans_type == "test":
        transform = transforms.Compose([
            transforms.Resize([input_size[1], input_size[0]]),
            # transforms.CenterCrop([input_size[1], input_size[0]]),
            # transforms.Resize(input_size),
            transforms.ToTensor(),
            transforms.Normalize(mean=rgb_mean, std=rgb_std),
        ])
    else:
        raise Exception("transform_type ERROR:{}".format(trans_type))
    return transform```


修改配置文件数据路径:​config.yaml​

```bash
# 训练数据集,可支持多个数据集
train_data:
  - '/path/to/Bird-Dataset26/train'
# 测试数据集
test_data: '/path/to/Bird-Dataset26/test'
# 类别文件
class_name: '/path/to/Bird-Dataset26/class_name.txt'```


#### (3)配置文件:​config.yaml​



+ 目前支持的backbone有:googlenet,resnet[18,34,50],inception_v3,mobilenet_v2等, 其他backbone可以自定义添加+ 训练参数可以通过(configs/config.yaml)配置文件进行设置



 配置文件:​config.yaml​说明如下:

```bash
# 训练数据集,可支持多个数据集
train_data:
  - '/path/to/Bird-Dataset26/train'
# 测试数据集
test_data: '/path/to/Bird-Dataset26/test'
# 类别文件
class_name: '/path/to/Bird-Dataset26/class_name.txt'
train_transform: "train"       # 训练使用的数据增强方法
test_transform: "val"          # 测试使用的数据增强方法
work_dir: "work_space/"        # 保存输出模型的目录
net_type: "resnet18"           # 骨干网络,支持:resnet18/50,mobilenet_v2,googlenet,inception_v3
width_mult: 1.0
input_size: [ 224,224 ]        # 模型输入大小
rgb_mean: [ 0.5, 0.5, 0.5 ]    # for normalize inputs to [-1, 1],Sequence of means for each channel.
rgb_std: [ 0.5, 0.5, 0.5 ]     # for normalize,Sequence of standard deviations for each channel.
batch_size: 32
lr: 0.01                       # 初始学习率
optim_type: "SGD"              # 选择优化器,SGD,Adam
loss_type: "CrossEntropyLoss"  # 选择损失函数:支持CrossEntropyLoss,LabelSmoothing
momentum: 0.9                  # SGD momentum
num_epochs: 100                # 训练循环次数
num_warn_up: 3                 # warn-up次数
num_workers: 8                 # 加载数据工作进程数
weight_decay: 0.0005           # weight_decay,默认5e-4
scheduler: "multi-step"        # 学习率调整策略
milestones: [ 20,50,80 ]       # 下调学习率方式
gpu_id: [ 0 ]                  # GPU ID
log_freq: 50                   # LOG打印频率
progress: True                 # 是否显示进度条
pretrained: False              # 是否使用pretrained模型
finetune: False                # 是否进行finetune
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
(4)开始训练

整套训练代码非常简单操作,用户只需要将相同类别的数据放在同一个目录下,并填写好对应的数据路径,即可开始训练了。

python train.py -c configs/config.yaml 
  • 1

训练完成后,在鸟类品种数据集Bird-Dataset26上,训练集的Accuracy在98%左右,测试集的Accuracy在95%左右,骨干网络,可支持googlenet, resnet[18,34,50], inception_v3,mobilenet_v2等常用模型,用户可以自行选择模型训练。
模型input sizeTest准确率****mobilenet_v2224×22495.0000%googlenet224×22496.1538%resnet18224×22495.9615%

(5)可视化训练过程

训练过程可视化工具是使用Tensorboard,使用方法,在终端输入:

# 基本方法
tensorboard --logdir=path/to/log/
# 例如
tensorboard --logdir=data/pretrained/mobilenet_v2_1.0_224_224_CrossEntropyLoss_20230828_172209_6476/log
  • 1
  • 2
  • 3
  • 4

可视化效果

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传
​​
外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

(6)一些优化建议

如果想进一步提高准确率,可以尝试:

  • 最重要的: 清洗数据集,鸟类品种数据集Bird-Dataset26,大部分数据是通过网上爬取的,存在部分错误的图片,尽管鄙人已经清洗一部分了,但还是建议你,训练前,再次清洗数据集,不然会影响模型的识别的准确率。+ 使用不同backbone模型,比如resnet50或者更深,参数量更大的模型+ 增加数据增强: 已经支持:** 随机裁剪,随机翻转,随机旋转,颜色变换等数据增强方式,可以尝试诸如mixup,CutMix**等更复杂的数据增强方式+ 样本均衡: 建议进行样本均衡处理,避免长尾问题+ 调超参: 比如学习率调整策略,优化器(SGD,Adam等)+ 损失函数: 目前训练代码已经支持:交叉熵,LabelSmoothing,可以尝试FocalLoss等损失函数
(7) 一些运行错误处理方法:
  • 项目不要出现含有中文字符的目录文件或路径,否则会出现很多异常!!!!!!!! + cannot import name ‘load_state_dict_from_url’

由于一些版本升级,会导致部分接口函数不能使用,请确保版本对应

torch==1.7.1

torchvision==0.8.2

或者将对应python文件将

from torchvision.models.resnet import model_urls, load_state_dict_from_url
  • 1

修改为:

from torch.hub import load_state_dict_from_url
model_urls = {
    'mobilenet_v2': 'https://download.pytorch.org/models/mobilenet_v2-b0353104.pth',
    'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
    'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
    'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
    'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
    'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
    'resnext50_32x4d': 'https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth',
    'resnext101_32x8d': 'https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth',
    'wide_resnet50_2': 'https://download.pytorch.org/models/wide_resnet50_2-95faca4d.pth',
    'wide_resnet101_2': 'https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth',
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

4. 鸟类分类识别模型测试效果

demo.py文件用于推理和测试模型的效果,填写好配置文件,模型文件以及测试图片即可运行测试了

def get_parser():
    # 配置文件
    config_file = "data/pretrained/mobilenet_v2_1.0_224_224_CrossEntropyLoss_20230828_172209_6476/config.yaml"
    # 模型文件
    model_file = "data/pretrained/mobilenet_v2_1.0_224_224_CrossEntropyLoss_20230828_172209_6476/model/best_model_063_95.0000.pth"
    # 待测试图片目录
    image_dir = "data/test_images"
    parser = argparse.ArgumentParser(description="Inference Argument")
    parser.add_argument("-c", "--config_file", help="configs file", default=config_file, type=str)
    parser.add_argument("-m", "--model_file", help="model_file", default=model_file, type=str)
    parser.add_argument("--device", help="cuda device id", default="cuda:0", type=str)
    parser.add_argument("--image_dir", help="image file or directory", default=image_dir, type=str)
    return parser
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
#!/usr/bin/env bash
# Usage:
# python demo.py  -c "path/to/config.yaml" -m "path/to/model.pth" --image_dir "path/to/image_dir"

python demo.py -c data/pretrained/mobilenet_v2_1.0_224_224_CrossEntropyLoss_20230828_172209_6476/config.yaml -m data/pretrained/mobilenet_v2_1.0_224_224_CrossEntropyLoss_20230828_172209_6476/model/best_model_063_95.0000.pth --image_dir data/test_images
  • 1
  • 2
  • 3
  • 4
  • 5

运行测试结果:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

pred_index:[‘灰犀鸟’],pred_score:[0.5273883]

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

5.项目代做

设计项目案例演示地址: 链接

毕业设计代做选题指导项目方向涵盖:

基于Python,MATLAB设计,OpenCV,,CNN,机器学习,R-CNN,GCN,LSTM,SVM,BP神经网络,数字识别,贝叶斯,逻辑回
归,卷积神经网络等算法的中文文本分类.车牌识别,知识图谱,数字图像处理,手势识别,边缘检测,图像增强,
图像分类,图像分割,色彩增强,低照度。缺陷检测,病害识别,图像缺陷检测,裂缝识别,
交通标志识别,夜间车牌识别,人数统计,火焰烟雾火,车道线识别,人脸识别等系
  • 1
  • 2
  • 3
  • 4
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/从前慢现在也慢/article/detail/248984?site
推荐阅读
相关标签
  

闽ICP备14008679号