赞
踩
多维时序 | MATLAB实现PSO-LSTM-Attention粒子群优化长短期记忆神经网络融合注意力机制的多变量时间序列预测
MATLAB实现PSO-LSTM-Attention粒子群优化长短期记忆神经网络融合注意力机制的多变量时间序列预测,用于处理时间序列数据;适用平台:Matlab 2023及以上
1.data为数据集,格式为excel,4个输入特征,1个输出特征,考虑历史特征的影响,多变量时间序列预测;
2.主程序文件,运行即可;
3.命令窗口输出R2、MAE、MAPE、MSE和MBE,可在下载区获取数据和程序内容;
注意程序和数据放在一个文件夹,运行环境为Matlab2023b及以上。
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- %% 数据集分析 outdim = 1; % 最后一列为输出 num_size = 0.7; % 训练集占数据集比例 num_train_s = round(num_size * num_samples); % 训练集样本个数 f_ = size(res, 2) - outdim; % 输入特征维度 %--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- %% 划分训练集和测试集 P_train = res(1: num_train_s, 1: f_)'; T_train = res(1: num_train_s, f_ + 1: end)'; M = size(P_train, 2); %--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- P_test = res(num_train_s + 1: end, 1: f_)'; T_test = res(num_train_s + 1: end, f_ + 1: end)'; N = size(P_test, 2); ———————————————— 版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。 原文链接:https://blog.csdn.net/kjm13182345320/article/details/130471154
[1] http://t.csdn.cn/pCWSp
[2] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501
[3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。