当前位置:   article > 正文

压缩感知常用的测量矩阵_压缩感知观测矩阵

压缩感知观测矩阵

测量矩阵的基本概念

压缩感知(Compressed Sensing,CS)理论中,测量矩阵(也称为采样矩阵)是实现信号压缩采样的关键工具。它是一个通常为非方阵的矩阵,用于将信号从高维空间映射到低维空间,生成观测向量。如果信号在某个基下是稀疏的,那么通过与测量矩阵相乘,可以得到它的压缩表示。

测量矩阵的作用

测量矩阵的主要作用是从原始高维信号中提取出足够的信息,以便于后续能够从这些较少的信息中准确恢复原信号。理想的测量矩阵应满足两个重要条件:一是与稀疏基正交(或近似正交),称为“不相干性”;二是具有良好的“限制等距性质”(Restricted Isometry Property,RIP),以确保所有稀疏信号的结构得到保留。

测量矩阵的使用形式

测量矩阵的形式和结构多种多样,但它们都需要满足上述两个条件。在实际应用中,一般希望测量矩阵能够容易实现和计算,并且有助于稀疏信号的重构。

常见的测量矩阵

  1. 随机高斯矩阵

    • 随机高斯矩阵的元素由独立同分布的高斯随机变量组成。它们的不相干性很好,并且以高概率满足RIP条件。
  2. 随机伯努利矩阵

    • 随机伯努利矩阵的元素取1和-1的概率均为1/2。伯努利矩阵也具备良好的不相干性和RIP条件。
  3. 随机傅里叶矩阵

    • 随机傅里叶矩阵
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/从前慢现在也慢/article/detail/377557
推荐阅读
相关标签
  

闽ICP备14008679号