当前位置:   article > 正文

用Python深度学习来快速实现图片的风格迁移

python简单复现neural style深度学习

先来看下效果:

640?wx_fmt=jpeg

上图是小编在甘南合作的米拉日巴佛阁外面拍下的一张照片,采用风格迁移技术后的效果为:

640?wx_fmt=gif

一些其它效果图:

640?wx_fmt=png

640?wx_fmt=png

640?wx_fmt=png

下面进入正题。

近年来,由深度学习所引领的人工智能(AI)技术浪潮,开始越来越广泛地应用到生活各个领域。这其中,人工智能与艺术的交叉碰撞,在相关技术领域和艺术领域引起了高度关注。就在上个月,由电脑生成的艺术品在佳士得(Christie’s)的拍卖价竟高达43.25万美元,证明人工智能不仅可以具有创造性,还可以创作出世界级的艺术品。

早些时候,有些人坚信艺术的创造力是人工智能无法替代的,艺术将是人类最后一片自留地!这不,没过多久,这片唯一的自留地也逐渐被人工智能所取代。

在这各种神奇的背后,最核心的就是基于深度学习的风格迁移(style transfer)技术。我将在这篇博客带领大家学习如何使用Python来快速实现图片的风格迁移。阅读完本博客后,相信你也能够创造出漂亮的艺术品。

1. 什么是图片的风格迁移?

640?wx_fmt=png

所谓图片风格迁移,是指利用程序算法学习著名画作的风格,然后再把这种风格应用到另外一张图片上的技术。

举个例子,见上图。左边是我们的原始图片(也称内容图像):小编在苏州甪直古镇的一座小桥上拍下的一张照片。

中间是我们的风格图片:挪威表现派画家爱德华·蒙克的代表作《呐喊》(The Scream)。

右边是将爱德华·蒙克的《呐喊》的风格应用于原始图片后生成的风格化结果图。仔细观察,图片是如何保留了流水、房屋、房屋在水中的倒影,甚至远处树木的内容,但却运用了《呐喊》的风格,就好像爱德华·蒙克在我们的景色中运用了他高超的绘画技巧一样!

问题是,我们应该定义一个什么样的神经网络来执行图片的风格迁移?

这可能吗?

答案是:可以的。我将在下一节简单讨论如何基于神经网络来实现图片风格的迁移。

2. 基本原理

Gatys等人在2015年发表了第一篇基于深度学习的风格迁移算法文章,原文链接为https://arxiv.org/abs/1508.06576,随后文章收录于2016年的CVPR顶会。

有趣的是,他们提出了一种完全不需要新网络架构的风格迁移算法,其使用的网络构架是在前人的VGG19基础上稍加改造而成的,而且网络参数也使用预训练(通常在ImageNet上)网络的参数。我们来看下它的原理:

640?wx_fmt=png

我们知道,卷积神经网络(CNN)具有很强的图像特征(feature/representation)提取能力,如上图所示。

对于内容图片,深层网络(d和e)提取的是高维特征,同时也丢弃了细节信息;浅层网络(a, b和c)提取的是低维特征,图片的细节大多都保留下来了。

对于风格图片,通过包含多层的特征相关性(Gram矩阵),可获得多尺度图像风格的重构,捕获其纹理信息。这样构建的网络可以忽略图像的具体细节,保留风格。

为了将内容图片和风格图片融合在一起(见下图),我们应该使风格化结果图(初始为一张白噪声图片)的特征同时与内容图片和风格图片的特征之间的距离最小化,最终获取我们所需的风格化结果图。

640?wx_fmt=png

因此生成目标图片的损失函数可定义为:

640?wx_fmt=png

其中α和β分别是内容图片和风格图片的特征所占的权重,通过最小化这个损失函数就可以获得我们想要的结果。来看个动态示意图:

640?wx_fmt=gif

值得注意的是,这里优化的参数不再是网络的权重ω和偏差b,而是初始输入的一张白噪声图片。

虽然上述方法可产生非常漂亮的风格迁移效果,但是速度很慢。

2016年,Johnson等人基于Gatys等人的工作,提出了一种速度可提高三个数量级的风格迁移算法。虽然算法的速度很快,但最大的缺点是不能像Gatys等人那样随意选择你的风格图片。针对每张风格图片,你都需要训练一个网络来重现这个风格。一旦网络模型训练好之后,你就可将它应用于你想要的任何内容图片了。

这篇博客我们将使用Johnson等人的方法,其算法实现和预训练模型可参考https://github.com/jcjohnson/fast-neural-style。

3. 基于OpenCV的快速实现

下面利用OpenCV来快速实现图片的风格迁移,我将其封装成一个叫 style_transfer()的函数,其使用说明可参考函数内部的注释。目前只有11个预训练模型可用,所有模型和相应风格图片都已上传至百度网盘。

  1. ## 载入所需库
  2. import cv2
  3. import time
  4. def style_transfer(pathIn='',
  5.                   pathOut='',
  6.                   model='',
  7.                   width=None,
  8.                   jpg_quality=80):
  9.    '''
  10.    pathIn: 原始图片的路径
  11.    pathOut: 风格化图片的保存路径
  12.    model: 预训练模型的路径
  13.    width: 设置风格化图片的宽度,默认为None, 即原始图片尺寸
  14.    jpg_quality: 0-100,设置输出图片的质量,默认80,越大图片质量越好
  15.    '''
  16.    ## 读入原始图片,调整图片至所需尺寸,然后获取图片的宽度和高度
  17.    img = cv2.imread(pathIn)
  18.    (h, w) = img.shape[:2]
  19.    if width is not None:
  20.        img = cv2.resize(img, (width, round(width*h/w)), interpolation=cv2.INTER_CUBIC)
  21.        (h, w) = img.shape[:2]
  22.    ## 从本地加载预训练模型
  23.    print('加载预训练模型......')
  24.    net = cv2.dnn.readNetFromTorch(model)    
  25.    ## 将图片构建成一个blob:设置图片尺寸,将各通道像素值减去平均值(比如ImageNet所有训练样本各通道统计平均值)
  26.    ## 然后执行一次前馈网络计算,并输出计算所需的时间
  27.    blob = cv2.dnn.blobFromImage(img, 1.0, (w, h), (103.939, 116.779, 123.680), swapRB=False, crop=False)
  28.    net.setInput(blob)
  29.    start = time.time()
  30.    output = net.forward()
  31.    end = time.time()
  32.    print("风格迁移花费:{:.2f}秒".format(end - start))
  33.    ## reshape输出结果, 将减去的平均值加回来,并交换各颜色通道
  34.    output = output.reshape((3, output.shape[2], output.shape[3]))
  35.    output[0] += 103.939
  36.    output[1] += 116.779
  37.    output[2] += 123.680
  38.    output = output.transpose(1, 2, 0)
  39.    ## 输出风格化后的图片
  40.    cv2.imwrite(pathOut, output, [int(cv2.IMWRITE_JPEG_QUALITY), jpg_quality])

来测试一下:

  1. >>> models = glob.glob('./*/*/*.t7')
  2. >>> models      ## 列出所有可用的预训练模型
  3. ['.\\models\\eccv16\\composition_vii.t7',
  4. '.\\models\\eccv16\\la_muse.t7',
  5. '.\\models\\eccv16\\starry_night.t7',
  6. '.\\models\\eccv16\\the_wave.t7',
  7. '.\\models\\instance_norm\\candy.t7',
  8. '.\\models\\instance_norm\\feathers.t7',
  9. '.\\models\\instance_norm\\la_muse.t7',
  10. '.\\models\\instance_norm\\mosaic.t7',
  11. '.\\models\\instance_norm\\starry_night.t7',
  12. '.\\models\\instance_norm\\the_scream.t7',
  13. '.\\models\\instance_norm\\udnie.t7']
  14. >>> pathIn = './img/img01.jpg'
  15. >>> pathOut = './result/result_img01.jpg'
  16. >>> model = './models/instance_norm/the_scream.t7'
  17. >>> style_transfer(pathIn, pathOut, model, width=500)
  18. 加载预训练模型......
  19. 风格迁移花费:1.18
  20. >>> pathIn = './img/img02.jpg'
  21. >>> pathOut = './result/result_img02.jpg'
  22. >>> model = './models/instance_norm/starry_night.t7'
  23. >>> style_transfer(pathIn, pathOut, model, width=500)
  24. 加载预训练模型......
  25. 风格迁移花费:3.17
  26. >>> pathIn = './img/img03.jpg'
  27. >>> pathOut = './result/result_img03.jpg'
  28. >>> model = './models/instance_norm/the_scream.t7'
  29. >>> style_transfer(pathIn, pathOut, model, width=500)
  30. 加载预训练模型......
  31. 风格迁移花费:0.90
  32. >>> pathIn = './img/img04.jpg'
  33. >>> pathOut = './result/result_img04.jpg'
  34. >>> model = './models/eccv16/the_wave.t7'
  35. >>> style_transfer(pathIn, pathOut, model, width=500)
  36. 加载预训练模型......
  37. 风格迁移花费:2.68
  38. >>> pathIn = './img/img05.jpg'
  39. >>> model = './models/instance_norm/mosaic.t7'
  40. >>> style_transfer(pathIn, pathOut, model, width=500)
  41. 加载预训练模型......
  42. 风格迁移花费:1.23

从运行结果可知,在CPU上,一张图片的风格迁移所花的时间大概也就几秒。如果使用GPU,完全可以实时对视频/摄像头进行风格迁移处理。

4. 目前的相关进展

自Gatys等人第一次(2015年)实现基于深度学习的风格迁移以来,风格迁移技术仍一直在发展,如今在速度和质量上都有了很大提高。目前的一些进展可以通过下面的链接来了解:

  • https://github.com/jcjohnson/fast-neural-style

  • https://github.com/DmitryUlyanov/texture_nets

  • https://github.com/luanfujun/deep-painterly-harmonization

  • https://junyanz.github.io/CycleGAN/

他们的一些作品:

1. 风格迁移

640?wx_fmt=jpeg

640?wx_fmt=jpeg

2. 外来图片的融合

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

3. 图片季节的变换

640?wx_fmt=jpeg

4. 图片背景的虚化

640?wx_fmt=jpeg

5. 角色互换

640?wx_fmt=jpeg

为了方便在电脑上阅读,文章也同步更新到相应专栏:

  • 知乎:

    https://www.zhihu.com/people/zoro-3-92/posts

  • 简书:

    https://www.jianshu.com/u/981ba7d6b4a6


往期热门:

菜鸟学Python数据分析|文章汇总上篇

值得收藏|菜鸟学Python【入门文章大全】

菜鸟写Python程序,如何从新手变老手


学习群:

小密圈人气很高的两个实战项目

小密圈的趣味实战-微信主题

3个月还没入门Python,看这100名小密圈的同学3周学Python的杰作

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/从前慢现在也慢/article/detail/530348
推荐阅读
相关标签
  

闽ICP备14008679号