当前位置:   article > 正文

Python求解最大特征值的快速方法_python求最大特征值

python求最大特征值

import scipy.linalg as scilin
import scipy.sparse.linalg.eigen.arpack as scispr

	# Benchmark the dense routine
    start = time.perf_counter()
    evals_large, evecs_large = scilin.eigh(X, eigvals=(N - k, N - 1))
    elapsed = (time.perf_counter() - start)
    print(evals_large)
    print("eigh elapsed time: ", elapsed)
    # Benchmark the sparse routine
    start = time.perf_counter()
    evals_large_sparse, evecs_large_sparse = scispr.eigsh(X, k, which='LM')
    elapsed = (time.perf_counter() - start)
    print(evals_large_sparse)
    print("eigsh elapsed time: ", elapsed)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

转载自 https://blog.csdn.net/itnerd/article/details/109774318?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522160673712519195271656300%2522%252C%2522scm%2522%253A%252220140713.130102334…%2522%257D&request_id=160673712519195271656300&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2allsobaiduend~default-4-109774318.first_rank_v2_pc_rank_v29&utm_term=python%E6%B1%82%E7%9F%A9%E9%98%B5%E6%9C%80%E5%A4%A7%E7%89%B9%E5%BE%81%E5%80%BC&spm=1018.2118.3001.4449

比用numpy.linalg.eig(N)求解特征值特征向量再Max取值快很多

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/从前慢现在也慢/article/detail/78147
推荐阅读
相关标签
  

闽ICP备14008679号