当前位置:   article > 正文

使用multiprocessing.Pool实现并发执行_pool = multiprocessing.pool(processes=7) #并发sql数

pool = multiprocessing.pool(processes=7) #并发sql数

整理自博友文章https://www.cnblogs.com/kaituorensheng/p/4445418.html,以下代码都在python3.6上测试(win10)

类:multiprocessing.Pool(processes)

  • 非阻塞

例子:

  1. #coding: utf-8
  2. import multiprocessing
  3. import time
  4. def func(msg):
  5. print("msg:", msg)
  6. time.sleep(3)
  7. print("end")
  8. if __name__ == "__main__":
  9. start = time.time()
  10. pool = multiprocessing.Pool(processes = 3)
  11. for i in range(4):
  12. msg = "hello %d" %(i)
  13. pool.apply_async(func, (msg, )) #维持执行的进程总数为processes,当一个进程执行完毕后会添加新的进程进去
  14. print("Mark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~")
  15. pool.close()
  16. pool.join() #调用join之前,先调用close函数,否则会出错。执行完close后不会有新的进程加入到pool,join函数等待所有子进程结束
  17. print("Sub-process(es) done.")
  18. end = time.time()
  19. print(f"time: {end-start}")

输出结果:

Mark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~
msg: hello 0
msg: hello 1
msg: hello 2
end
msg: hello 3
end
end
end
Sub-process(es) done.
time: 6.277066230773926

分析:pool为类实例

apply_async(func[, args=()[, kwds={}[, callback=None]]])方法加入函数func,以及函数参数args,功能是把函数执行进程加入到进程池中,并且不会阻塞主进程,这一点在输出结果中可以看出来,因为Mark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~在func函数的输出之前输出;

close()方法关闭进程池(pool),使其不在接受新的任务;

join()方法将主进程阻塞等待子进程的退出,join方法必须在close或terminate之后使用。

  • 阻塞

例子:(与上面的例子只差在apply上面)

  1. #coding: utf-8
  2. import multiprocessing
  3. import time
  4. def func(msg):
  5. print("msg:", msg)
  6. time.sleep(3)
  7. print("end")
  8. if __name__ == "__main__":
  9. start = time.time()
  10. pool = multiprocessing.Pool(processes = 3)
  11. for i in range(4):
  12. msg = "hello %d" %(i)
  13. pool.apply(func, (msg, )) #维持执行的进程总数为processes,当一个进程执行完毕后会添加新的进程进去
  14. print("Mark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~")
  15. pool.close()
  16. pool.join() #调用join之前,先调用close函数,否则会出错。执行完close后不会有新的进程加入到pool,join函数等待所有子进程结束
  17. print("Sub-process(es) done.")
  18. end = time.time()
  19. print(f"time: {end-start}")

输出结果:

msg: hello 0
end
msg: hello 1
end
msg: hello 2
end
msg: hello 3
end
Mark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~
Sub-process(es) done.
time: 12.32795238494873

  • 捕捉函数返回结果

例子:(使用get()得到函数返回的结果)

  1. import multiprocessing
  2. import time
  3. def func(msg):
  4. print("msg:", msg)
  5. time.sleep(3)
  6. print("end")
  7. return("done " + msg)
  8. if __name__ == "__main__":
  9. pool = multiprocessing.Pool(processes=4)
  10. result = []
  11. for i in range(5):
  12. msg = "hello %d" %(i)
  13. result.append(pool.apply_async(func, (msg, )))
  14. pool.close()
  15. pool.join()
  16. for res in result:
  17. print(":::", res.get())
  18. print("Sub-process(es) done.")

输出结果:msg: hello 0
msg: hello 1
msg: hello 2
msg: hello 3
end
msg: hello 4
end
end
end
end
::: done hello 0
::: done hello 1
::: done hello 2
::: done hello 3
::: done hello 4
Sub-process(es) done.

声明:本文内容由网友自发贡献,转载请注明出处:【wpsshop】
推荐阅读
相关标签
  

闽ICP备14008679号