赞
踩
之前我们聊过如何使用LangChain给LLM(大模型)装上记忆,里面提到对话链ConversationChain
和MessagesPlaceholder
,可以简化安装记忆的流程。下文来拆解基于LangChain的大模型记忆方案。
给LLM安装记忆的核心步骤就3个:
了解这3个核心步骤后,在开发过程中,就需要手动写代码实现这3步,这也比较麻烦,不仅代码冗余,而且容易遗漏这些模板代码。
为了让开发者聚焦于业务实现,LangChain贴心地封装了这一整套实现。使用方式如下。
记忆分为 短时记忆 和 长时记忆。
在LangChain中使用ConversationBufferMemory
作为短时记忆的组件,实际上就是以键值对的方式将消息存在内存中。
如果碰到较长的对话,一般使用ConversationSummaryMemory
对上下文进行总结,再交给大模型。或者使用ConversationTokenBufferMemory
基于固定的token数量进行内存刷新。
如果想对记忆进行长时间的存储,则可以使用向量数据库进行存储(比如FAISS、Chroma等),或者存储到Redis、Elasticsearch中。
下面以ConversationBufferMemory
为例,对如何快速安装记忆做个实践。
使用ConversationBufferMemory
进行记住上下文:
- memory = ConversationBufferMemory()
- memory.save_context(
- {"input": "你好,我的名字是半支烟,我是一个程序员"}, {"output": "你好,半支烟"}
- )
- memory.load_memory_variables({})
-
- # prompt模板
- template = """
- 你是一个对话机器人,以下<history>标签中是AI与人类的历史对话记录,请你参考历史上下文,回答用户输入的问题。
- 历史对话:
- <history>
- {customize_chat_history}
- </history>
- 人类:{human_input}
- 机器人:
- """
-
- prompt = PromptTemplate(
- template=template,
- input_variables=["customize_chat_history", "human_input"],
- )
- memory = ConversationBufferMemory(
- memory_key="customize_chat_history",
- )
- model = ChatOpenAI(
- model="gpt-3.5-turbo",
- )
-
- chain = LLMChain(
- llm=model,
- memory=memory,
- prompt=prompt,
- verbose=True,
- )
-
- chain.predict(human_input="你知道我的名字吗?")
-
- # chain.predict(human_input="我叫半支烟,我是一名程序员")
-
- # chain.predict(human_input="你知道我的名字吗?")
此时,已经给LLM安装上记忆了,免去了我们写那3步核心的模板代码。
对于PromptTemplate
使用以上方式,但ChatPromptTemplate
因为有多角色,所以需要使用MessagesPlaceholder
。具体使用方式如下。
MessagesPlaceholder
主要就是用于ChatPromptTemplate
场景。ChatPromptTemplate
模式下,需要有固定的格式。
ChatPromptTemplate
主要用于聊天场景。ChatPromptTemplate
有多角色,第一个是System角色,后续的是Human与AI角色。因为需要有记忆,所以之前的历史消息要放在最新问题的上方。
最终的ChatPromptTemplate + MessagesPlaceholder代码如下:
- chat_prompt = ChatPromptTemplate.from_messages(
- [
- ("system", "你是一个乐于助人的助手。"),
- MessagesPlaceholder(variable_name="customize_chat_history"),
- ("human", "{human_input}"),
- ]
- )
-
- memory = ConversationBufferMemory(
- memory_key="customize_chat_history",
- return_messages=True,
- )
- model = ChatOpenAI(
- model="gpt-3.5-turbo",
- )
-
- chain = LLMChain(
- llm=model,
- memory=memory,
- prompt=chat_prompt,
- verbose=True,
- )
-
- chain.predict(human_input="你好,我叫半支烟,我是一名程序员。")
-
至此,我们使用了ChatPromptTemplate
简化了构建prompt的过程。
如果连ChatPromptTemplate
都懒得写了,那直接使用对话链ConversationChain
,让一切变得更简单。实践代码如下:
- memory = ConversationBufferMemory(
- memory_key="history", # 此处的占位符必须是history
- return_messages=True,
- )
- model = ChatOpenAI(
- model="gpt-3.5-turbo",
- )
-
- chain = ConversationChain(
- llm=model,
- memory=memory,
- verbose=True,
- )
-
- chain.predict(input="你好,我叫半支烟,我是一名程序员。") # 此处的变量必须是input
ConversationChain提供了包含AI角色和人类角色的对话摘要格式。ConversationChain实际上是对Memory和LLMChain和ChatPrompt进行了封装,简化了初始化Memory和构建ChatPromptTemplate的步骤。
ConversationBufferMemory
有一个入参是memory_key
,表示内存中存储的本轮对话的键
,后续可以根据键
找到对应的值。
ConversationBufferMemory
的memory_key
,有些资料里是设置是memory_key="history"
,有些资料里是"chat_history"
。
这里有2个规则,如下:
MessagesPlaceholder
和ConversationBufferMemory
时,MessagesPlaceholder
的variable_name
和ConversationBufferMemory
的memory_key
可以自定义,只要相同就可以。比如这样:- chat_prompt = ChatPromptTemplate.from_messages(
- [
- ("system", "你是一个乐于助人的助手。"),
- MessagesPlaceholder(variable_name="customize_chat_history"),
- ("human", "{input}"),
- ]
- )
-
- memory = ConversationBufferMemory(
- memory_key="customize_chat_history", # 此处的占位符可以是自定义
- return_messages=True,
- )
- model = ChatOpenAI(
- model="gpt-3.5-turbo",
- )
-
- chain = ConversationChain(
- llm=model,
- memory=memory,
- prompt=chat_prompt,
- verbose=True,
- )
-
- chain.predict(input="你好,我叫半支烟,我是一名程序员。") # 此处的变量必须是input
ConversationChain
,又没有使用MessagesPlaceholder
的场景下,ConversationBufferMemory的memory_key,必须用history
。MessagesPlaceholder
其实就是在与AI对话过程中的Prompt
的一部分,它代表Prompt
中的历史消息这部分。它提供了一种结构化和可配置的方式来处理这些消息列表,使得在构建复杂Prompt
时更加灵活和高效。
说白了它就是个占位符,相当于把从memory读取的历史消息插入到这个占位符里了。
比如这样,就可以表示之前的历史对话消息:
- chat_prompt = ChatPromptTemplate.from_messages(
- [
- ("system", "你是一个乐于助人的助手。"),
- MessagesPlaceholder(variable_name="customize_chat_history"),
- ("human", "{human_input}"),
- ]
- )
是否需要使用MessagesPlaceholder,记住2个原则:
PromptTemplate
类型的模板,无需使用MessagesPlaceholder
ChatPromptTemplate
类型的聊天模板,需要使用MessagesPlaceholder。但是在使用ConversationChain时,可以省去创建ChatPromptTemplate的过程(也可以不省去)。省去和不省去在输出过程中有些区别,如下:
本文主要聊了安装记忆的基本原理、快速给LLM安装记忆、ConversationBufferMemory
、MessagesPlaceholder
的使用、对话链ConversationChain
的使用和原理。希望对你有帮助!
=====>>>>>> 关于我 <<<<<<=====
本篇完结!欢迎点赞 关注 收藏!!!
原文链接:拆解LangChain的大模型记忆方案
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。