当前位置:   article > 正文

独家 | 数据科学家指南:梯度下降与反向传播算法

反向传播学习机制 随机梯度下降训练模型

2d69769b71b3c674e4578ce471ecabb8.png

  1. 作者:Richmond Alake 
  2. 翻译:陈之炎
  3. 校对:zrx
  4. 本文约3300字,建议阅读5分钟
  5. 本文旨在为数据科学家提供一些基础知识,以理解在训练神经网络时所需调用的底层函数和方法。

标签:神经网络,梯度下降,反向传播

22b5821c062796003c6cefdb30e4727b.png

人工神经网络[ANN)是人工智能技术的基础,同时也是机器学习模型的基础。它们模拟人类大脑的学习过程,赋予机器完成特定类人任务的能力。

数据科学家的目标是利用公开数据来解决商业问题。通常,利用机器学习算法来识别模式,用算法模型实现预测。如何为特定的用例选择正确的模型,并适当地调整参数?这需要对问题和底层算法有清晰的理解,即充分理解问题和算法,确保使用正确模型,并正确解释结果。

本文介绍并解释了梯度下降算法和反向传播算法。人工神经网络利用这些算法学习数据集,当神经网络中数据发生变化时,应如何去修正网络参数。

建立直觉

在深入探讨技术细节之前,首先来看看人类如何学习。

人类大脑的学习过程是复杂的,当前的研究工作只涉及到人类学习方式的表像。然而,已知的研究结果对构建模型非常有价值,与机器不同,在做逻辑预测时,人类无需借助大量的数据来解决问题,人们直接从经验和错误中吸取教训。

人类通过突触可塑性的过程来学习,突触可塑性是一个术语,用来描述在获得新的信息后,如何形成和加强新的神经连接。当人类经历新事件时,大脑中的连接会加强,通过训练人工神经网络,计算出预测的错误率,在此基础上来决策是加强或削弱神经元之间的内部连接。

梯度下降

梯度下降算法是一种标准的优化算法,通常,它是机器学习优化算法的首选算法。首先,来剖析一下术语“梯度下降”,以更好地理解它与机器学习算法之间的关系。

梯度是直线或曲线陡峭程度的量化度量,在

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/代码探险家/article/detail/910175
推荐阅读
相关标签
  

闽ICP备14008679号