当前位置:   article > 正文

数据工程师需要具备哪些技能?_数据服务工程师需要什么技能

数据服务工程师需要什么技能

成为数据工程师需要具备哪些技能?数据工程工作存在于各个行业,在银行业、医疗保健业、大型科技企业、初创企业和其他行业找到工作机会。许多职位描述要求数据工程师、拥有数学或工程学位,但如果有合适的经验学位往往没那么重要。

大数据开发做什么?

大数据开发分两类,编写Hadoop、Spark的应用程序和对大数据处理系统本身进行开发。大数据开发工程师主要负责公司大数据平台的开发和维护、相关工具平台的架构设计与产品开发、网络日志大数据分析、实时计算和流式计算以及数据可视化等技术的研发和网络安全业务主题建模等工作。

大数据开发应具备的技能:

目前从事大数据应用开发的语言包括Java、Python、Scala、R等,需要熟悉Hadoop、HBbase、hive、spark、Flink、ES、Presto、Flume、Kafka生态的原理和使用方法,掌握数据开发、数据挖掘的各项流程。
在大数据领域,国内发展的比较晚,从 2016 年开始,仅有 200 多所大学开设了大数据相关的专业,也就是说 2020 年第一批毕业生才刚刚步入社会,我国市场环境处于急需大数据人才但人才不足的阶段,所以未来大数据领域会有很多的就业机遇。

可以看看工作岗位以及相应的应聘需求,剩下的就是学习了

目前企业提供的大数据岗位按照工作内容要求,可以分为以下几类:

① 初级分析类,包括业务数据分析师、商务数据分析师等。

② 挖掘算法类,包括数据挖掘工程师、机器学习工程师、深度学习工程师、算法工程师、AI工程师、数据科学家等。

③ 开发运维类,包括大数据开发工程师、大数据架构工程师、大数据运维工程师、数据可视化工程师、数据采集工程师、数据库管理员等。

④ 产品运营类,包括数据运营经理、数据产品经理、数据项目经理、大数据销售等。四类岗位的数量和占比见下图。

大数据需求越来越多,国家也在开设相关岗位,从2018年开始就逐年较大的增长。

此时报考大学的学生和家长也对大数据,人工智能非常感兴趣,大数据连续3年进了前5,而且学历主要是本科就可以。

可以预见的将来这几年,这真的是一个朝阳行业,而且现在缺口很大。

**那么如何获得数据开发相关岗位的工作经验?**如果是应届毕业生争取获得一个数据工程师的实习机会。门槛最低雇主们愿意找一个没有工作经验的人;另一种是侧面获得该职位,即使你没有计算机科学或数学背景,仍然可以通过获得分析师或项目经理的职位进入数据工程领域,开始着手越来越多的数据工程领域的工作。不仅需要做自己份内的工作,也要做一些额外的数据工程工作,试着争取与数据工程师非常接近的职位,如数据分析师。

**数据工程师应具备哪些技能?**高水平的数据工程师将数据从A点传输到B点,并将其重新构建为分析师和数据科学家可以轻松使用的格式。从技能的角度来看,数据工程师需要ETLs(提取、转换、加载)、自动化(通常使用Python或其他编程语言)、数据建模或者数据仓库、SQL和NoSQL数据操作以及数据可视化等专业技能。ETLs和数据仓库是一种新技能,在获得学士学位后,会在硕士或证书课程中得到更多的涉猎。

数据工程师应该能够熟练的使用各种工具,从编程语言到拖放工具,从云数据仓库到数据可视化程序。可供数据工程师使用的工具比一个人一生可能掌握的工具要多得多。如数据工程工具包括SSIS、Azuredata Factory、Tableau、Informatica、Matillion、Fivetran、Snowflake、Redshift和Databricks等。大数据工程师的技术要求如下:

1、掌握至少一种数据库开发技术:Oracle、Teradata、DB2、Mysql等,灵活运用SQL实现海量数据ETL加工处理;

2、熟悉Linux系统常规shell处理命令,灵活运用shell做的文本处理和系统操作;

3、有从事分布式数据存储与计算平台应用开发经验,熟悉Hadoop生态相关技术并有相关实践经验着优先,重点考察Hdfs、Mapreduce、Hive、Hbase;

4、熟练掌握一门或多门编程语言,并有大型项目建设经验者优先,重点考察Java、Python、Perl;

5、熟悉数据仓库领域知识和技能者优先,包括但不局限于:元数据管理、数据开发测试工具与方法、数据质量、主数据管理;

6、掌握实时流计算技术,有storm开发经验者优先。

数据工程师的目标着眼于全局和开发。数据工程师建立自动化系统和模型数据结构以使数据得到有效处理。数据工程师的目标是创建及开发表和数据管道,以支持分析仪表板和其他数据客户(如数据科学家、分析师和其他工程师)。与大多数工程师很相似,有很多设计、假设、限制和开发,能够创建某种最终的强健系统。这个系统可能是一个数据仓库和ETL或者流式管道。

大数据学习潮流已成必然,“超高薪、高大上、前景光明”成为大数据行业的代名词。随着数据开发工程师成为炙手可热的职位,与之相关各项条件水涨船高:录取标准、人才需求、以及,薪资待遇,因此想要学习大数据掌握相关技能才是自身最大的核心竞争力。

猎聘大数据研究院发布了《2022未来人才就业趋势报告》

从排名来看,2022年1-4月各行业中高端人才平均年薪来看,人工智能行业中高端人才平均年薪最高,为31.04万元;金融行业中高端人才以27.69万元的平均年薪位居第二;通信、大数据行业中高端人才平均年薪分别为27.51万元、25.23万元,位列第三、第四;IT/互联网行业中高端人才平均年薪23.02万元,位列第七。

在这里插入图片描述
图表来源:《2022未来人才就业趋势报告》

如果你觉得很高,被平均了这样?那么打开Boss直聘,搜大数据工程师:
在这里插入图片描述
我们来做下数据分析:

薪资那一列都有一个最低薪资和最高薪资,我们通过不同城市来对比分析一下,发现北京的工资水平最高,最低为22k,最高为38k。
在这里插入图片描述
工作年限也是一个制约工资水平的很大因素,从图中可以看出,即使是刚毕业,也能达到一个11-20k的薪资范围。
在这里插入图片描述
而学历要求来说,大部分为本科,其次为大专和硕士,其他比较少,以至于在图中并没有显示出来。在这里插入图片描述
企业对不同岗位的要求以3-5年的居多,企业当然是需要有一定工作经验的员工,但是在实际招聘中,如果你有项目经验,且理论知识没问题,企业也会放宽条件。
在这里插入图片描述
分析不同行业, 我们发现,大数据岗位需求分布在各行各业,主要还是在计算机软件和互联网最多,也有可能是这个招聘软件决定的,毕竟Boss直聘还是以互联网行业为主。
在这里插入图片描述
来看看哪些公司在招聘大数据相关岗位,从这个超过15的数量来看,华为,腾讯,阿里,字节,这些大厂对这个岗位的需求量还是很大的。
在这里插入图片描述
那么这些岗位都需要什么技能呢?Spark,Hadoop,数据仓库,Python,SQL,Mapreduce,Hbase等等
在这里插入图片描述

根据国内的发展形势,大数据未来的发展前景会非常好。自 2018 年企业纷纷开始数字化转型,一二线城市对大数据领域的人才需求非常强烈,未来几年,三四线城市的人才需求也会大增。

在大数据领域,国内发展的比较晚,从 2016 年开始,仅有 200 多所大学开设了大数据相关的专业,也就是说 2020 年第一批毕业生才刚刚步入社会,我国市场环境处于急需大数据人才但人才不足的阶段,所以未来大数据领域会有很多的就业机遇。
薪资高、缺口大,自然成为职场人的“薪”选择!

任何学习过程都需要一个科学合理的学习路线,才能够有条不紊的完成我们的学习目标。Python+大数据所需学习的内容纷繁复杂,难度较大,为大家整理了一个全面的Python+大数据学习路线图,帮大家理清思路,攻破难关!

Python+大数据学习路线图详细介绍

第一阶段 大数据开发入门

学前导读:从传统关系型数据库入手,掌握数据迁移工具、BI数据可视化工具、SQL,对后续学习打下坚实基础。

1.大数据数据开发基础MySQL8.0从入门到精通

MySQL是整个IT基础课程,SQL贯穿整个IT人生,俗话说,SQL写的好,工作随便找。本课程从零到高阶全面讲解MySQL8.0,学习本课程之后可以具备基本开发所需的SQL水平。

2022最新MySQL知识精讲+mysql实战案例_零基础mysql数据库入门到高级全套教程

第二阶段 大数据核心基础

学前导读:学习Linux、Hadoop、Hive,掌握大数据基础技术。

2022版大数据Hadoop入门教程
Hadoop离线是大数据生态圈的核心与基石,是整个大数据开发的入门,是为后期的Spark、Flink打下坚实基础的课程。掌握课程三部分内容:Linux、Hadoop、Hive,就可以独立的基于数据仓库实现离线数据分析的可视化报表开发。

2022最新大数据Hadoop入门视频教程,最适合零基础自学的大数据Hadoop教程

第三阶段 千亿级数仓技术

学前导读:本阶段课程以真实项目为驱动,学习离线数仓技术。

数据离线数据仓库,企业级在线教育项目实战(Hive数仓项目完整流程)
本课程会、建立集团数据仓库,统一集团数据中心,把分散的业务数据集中存储和处理 ;目从需求调研、设计、版本控制、研发、测试到落地上线,涵盖了项目的完整工序 ;掘分析海量用户行为数据,定制多维数据集合,形成数据集市,供各个场景主题使用。

大数据项目实战教程_大数据企业级离线数据仓库,在线教育项目实战(Hive数仓项目完整流程)

第四阶段 PB内存计算

学前导读:Spark官方已经在自己首页中将Python作为第一语言,在3.2版本的更新中,高亮提示内置捆绑Pandas;课程完全顺应技术社区和招聘岗位需求的趋势,全网首家加入Python on Spark的内容。

1.python入门到精通(19天全)

python基础学习课程,从搭建环境。判断语句,再到基础的数据类型,之后对函数进行学习掌握,熟悉文件操作,初步构建面向对象的编程思想,最后以一个案例带领同学进入python的编程殿堂。

全套Python教程_Python基础入门视频教程,零基础小白自学Python必备教程

2.python编程进阶从零到搭建网站

学完本课程会掌握Python高级语法、多任务编程以及网络编程。

Python高级语法进阶教程_python多任务及网络编程,从零搭建网站全套教程

3.spark3.2从基础到精通

Spark是大数据体系的明星产品,是一款高性能的分布式内存迭代计算框架,可以处理海量规模的数据。本课程基于Python语言学习Spark3.2开发,课程的讲解注重理论联系实际,高效快捷,深入浅出,让初学者也能快速掌握。让有经验的工程师也能有所收获。

Spark全套视频教程,大数据spark3.2从基础到精通,全网首套基于Python语言的spark教程

4.大数据Hive+Spark离线数仓工业项目实战

通过大数据技术架构,解决工业物联网制造行业的数据存储和分析、可视化、个性化推荐问题。一站制造项目主要基于Hive数仓分层来存储各个业务指标数据,基于sparkSQL做数据分析。核心业务涉及运营商、呼叫中心、工单、油站、仓储物料。

全网首次披露大数据Spark离线数仓工业项目实战,Hive+Spark构建企业级大数据平台

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/你好赵伟/article/detail/155391
推荐阅读
相关标签
  

闽ICP备14008679号