赞
踩
CUDA(Compute Unified Device Architecture),是显卡厂商NVIDIA推出的运算平台。 CUDA™是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题。
CUDA核心数量决定了GPU并行处理的能力,在深度学习、机器学习等并行计算类业务下,CUDA核心多意味着性能好一些。
CUDA是NVIDIA推出的统一计算架构,NVIDIA过去的几乎每款GPU都有CUDA Core,而Tensor Core是最近几年才有的,Tensor Core是专为执行张量或矩阵运算而设计的专用执行单元,而这些运算正是深度学习所采用的核心计算函数。Tensor核心在训练方面能够提供高达12倍的teraflops (TFLOPS) 峰值,而在推理方面则可提供6倍的TFLOPS峰值。每个Tensor核心每个时钟周期可执行64次浮点混合乘加 (FMA) 运算。
FLOPS,即每秒浮点运算次数(亦称每秒峰值速度)是每秒所执行的浮点运算次数(英文:Floating-point operations per second;缩写:FLOPS)的简称,被用来评估电脑效能,尤其是在使用到大量浮点运算的科学计算领域中。
显存容量:其主要功能就是暂时储存GPU要处理的数据和处理完毕的数据。显存容量大小决定了GPU能够加载的数据量大小。(在显存已经可以满足客户业务的情况下,提升显存不会对业务性能带来大的提升。在深度学习、机器学习的训练场景,显存的大小决定了一次能够加载训练数据的量,在大规模训练时,显存会显得比较重要。
显存位宽:显存在一个时钟周期内所能传送数据的位数,位数越大则瞬间所能传输的数据量越大,这是显存的重要参数之一。
gpu架构:Tesla、Fermi、Kepler、Maxwell、Pascal
芯片型号:GT200、GK210、GM104、GF104等
显卡系列:GeForce-家庭娱乐、Quadro-工作站、Tesla-服务器
GeForce显卡型号:G/GS、GT、GTS、GTX、RTX
显卡系列在本质上并没有什么区别,只是NVIDIA希望区分成三种选择,GeFore用于家庭娱乐,Quadro用于工作站,而Tesla系列用 于服务器。Tesla的k型号卡为了高性能科学计算而设计。
GeForce的显卡型号是不同的硬件定制,越往后性能越好,时钟频率越高显存越大,即G/GS<GT<GTS<GTX<RTX。
GTX 到RTX:RTX20显卡采用的“图灵”架构引入了RT计算单元,使其光线追踪性能超越上一代显卡的六倍,拥有了即时处理游戏光追的条件,NVIDIA认为这是一个划时代的进化,于是果断把沿用多年的“GTX”改名为“RTX”。
Jon Peddie Research(JPR)发布了新的GPU市场数据统计报告。在台式机和笔记本电脑使用的独立显卡(gpu)中,英伟达(NVIDIA)占据了81%的市场份额,而AMD是19%。英特尔公司主要是在集成GPU上占有市场。
下表价格是2022年2月28日京东查的价格,基本上价格越贵性能越好,虽然价格炒高了很多:
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。