当前位置:   article > 正文

SR3:Image Super-Resolution via Iterative Refinement(零基础解读基于diffusion的超分网络)

image super-resolution via iterative refinement

Image Super-Resolution via Iterative Refinement

摘要: 本文提出来一种通过重复精细化操作来实现图像超分辨率的SR3模型。SR3将噪扩散概率模型嫁接至在图像到图像的翻译任务中,通过随机迭代去噪实现图像超分辨率。通过训练一个用于在各种水平噪声上去噪的U-Net架构,逐步的对完全高斯噪声进行逐步精细化最终得到输出图像。不论是人脸图像还是自然图像,SR3都在不同倍率的超分辨率任务上展示出超强的性能。我们在*We conduct human evaluation on a standard 8x face super-resolution task on CelebA-HQ for which SR3 achieves a fool rate close to 50%, suggesting photo-realistic outputs, while GAN baselines do not exceed a fool rate of 34%. We evaluate SR3 on a 4x super-resolution task on ImageNet, where SR3 outperforms baselines in human evaluation and classification accuracy of a ResNet-50 classifier trained on high-resolution images. We further show the effectiveness of SR3 in cascaded image generation, where a generative model is chained with super-resolution models to synthesize high-resolution images with competitive FID scores on the class-conditional 256x256 ImageNet generation challenge.(结果展示,与超分无关) *

简介:

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/你好赵伟/article/detail/220727
推荐阅读
相关标签
  

闽ICP备14008679号