赞
踩
1.时间序列
2.pandas重采样
重采样:指的是将时间序列从一个频率转化为另一个频率进行处理的过程,将高频率数据转化为低频率数据为降采样,低频率转 化为高频率为升采样。
统计出911数据中不同月份电话次数的变化情况:
- #encoding=utf-8
- import pandas as pd
- import numpy as np
- from matplotlib import pyplot as plt
- df = pd.read_csv("./911.csv")
-
- df["timeStamp"] = pd.to_datetime(df["timeStamp"])
- #print(df["timeStamp"]) #输出的是日期
- df.set_index("timeStamp",inplace=True)
- #print(df.head())
- #统计出911数据中不同月份电话次数
- count_by_month = df.resample("M").count()["title"]
- #print(count_by_month)
-
- #画图
- _x = count_by_month.index
- _x =[i.strftime("%Y%m%d") for i in _x]
- _y = count_by_month.values
- plt.figure(figsize=(20,8),dpi=80)
- plt.plot(range(len(_x)),_y)
- plt.xticks(range(len(_x)),_x,rotation = 45)
- plt.show()

1.统计出911数据中不同月份不同类型的电话的次数的变化情况:
- # coding=utf-8
- #911数据中不同月份不同类型的电话的次数的变化情况
- import pandas as pd
- import numpy as np
- from matplotlib import pyplot as plt
-
- #把时间字符串转为时间类型设置为索引
- df = pd.read_csv("./911.csv")
- df["timeStamp"] = pd.to_datetime(df["timeStamp"])
- #添加列,表示分类
- temp_list = df["title"].str.split(": ").tolist()
- cate_list = [i[0] for i in temp_list]
- # print(np.array(cate_list).reshape((df.shape[0],1)))
- df["cate"] = pd.DataFrame(np.array(cate_list).reshape((df.shape[0],1)))
- #print(df.shape[0])#输出行数
- df.set_index("timeStamp",inplace=True)
- #print(df.head(1))
-
- plt.figure(figsize=(20, 8), dpi=80)
-
- #分组
- for group_name,group_data in df.groupby(by="cate"):
-
- #对不同的分类都进行绘图
- count_by_month = group_data.resample("M").count()["title"]
-
- # 画图
- _x = count_by_month.index
- #print(_x)
- _y = count_by_month.values
-
- _x = [i.strftime("%Y%m%d") for i in _x]
-
- plt.plot(range(len(_x)), _y, label=group_name)
-
-
- plt.xticks(range(len(_x)), _x, rotation=45)
- plt.legend(loc="best")
- plt.show()

现在我们有北上广、深圳、和沈阳5个城市空气质量数据,请绘制出5个城市的PM2.5随时间的变化情况:
- #encoding=utf-8
- import pandas as pd
- from matplotlib import pyplot as plt
- file_path = "PM2.5/BeijingPM20100101_20151231.csv"
- df = pd.read_csv(file_path)
- # print(df.head())
- #print(df.info())
- #把分开的时间字符串通过periodIndex的方法转化为pandas时间类型
- period = pd.PeriodIndex(year=df["year"],month=df["month"],day=df["day"],hour=df["hour"],freq="H")
- df["datatime"] = period
- #print(df.head(10))
-
- #把datatime设置为索引
- df.set_index("datatime",inplace=True)
- #进行降采样
- df = df.resample("7D").mean()
-
- #处理缺失数据
- #print(df["PM_US Post"])
- data = df["PM_US Post"].dropna()
- data_china = df["PM_Dongsi"].dropna()
- _x = data.index
- _x =[i.strftime("%Y%m%d") for i in _x]
- _x_china = [i.strftime("%Y%m%d") for i in data_china.index]
- _y = data.values
- _y_china = data_china.values
- plt.figure(figsize=(20,8),dpi=80)
- plt.plot(range(len(_x)),_y,label="US_POST")
- plt.plot(range(len(_x_china)),_y_china,label="CHINA_POST")
- plt.legend(loc="best")
- plt.xticks(range(0,len(_x),20),list(_x)[::20],rotation=45)
- plt.show()

Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。