当前位置:   article > 正文

最新AI领域源码实现分享(附源代码下载)

ai源代码

点击蓝字 关注我们

关注并星标

从此不迷路

计算机视觉研究院

d6d01c3df7f5c031702300066253e84d.gif

f930262dfa325ae1a645a3ac2b845890.gif

公众号ID计算机视觉研究院

学习群扫码在主页获取加入方式

计算机视觉研究院专栏

Column of Computer Vision Institute

几篇较好的论文源码实践分享!

a12aa21b29c029f41d05bc645a314a24.gif

《Learning Dense Correspondences between Photos and Sketches, Xuanchen Lu, Xiaolong Wang, Judith Fan》(ICML 2023) 

GitHub: github.com/cogtoolslab/photo-sketch-correspondence

d779ce3add112cf9005c4546a69aa0e1.png

《Optimal Transport-Guided Conditional Score-Based Diffusion Model 》(NeurIPS 2023) 

GitHub: github.com/XJTU-XGU/OTCS

6c477028eb46e1cad4d0cfa70222ecda.png

《PointClustering: Unsupervised Point Cloud Pre-training using Transformation Invariance in Clustering》(CVPR 2023) 

GitHub: github.com/FuchenUSTC/PointClustering

8f120e626cef1f1f0a1aa244fdc6a33b.png

《Plug-and-Play Diffusion Features for Text-Driven Image-to-Image Translation》(CVPR 2023) 

GitHub: github.com/MichalGeyer/pnp-diffusers

1bd4babbb8a37646eb0f2b18b16eab54.png

《Small Object Detection via Coarse-to-fine Proposal Generation and Imitation Learning》(ICCV 2023) 

GitHub: github.com/shaunyuan22/CFINet

《Text-Video Retrieval with Disentangled Conceptualization and Set-to-Set Alignment》(IJCAI 2023) 

GitHub: github.com/jpthu17/DiCoSA

f195bb954b71c4f260cf56075f8b3c07.png

《SwinLSTM: Improving Spatiotemporal Prediction Accuracy using Swin Transformer and LSTM》(ICCV 2023) 

GitHub: github.com/SongTang-x/SwinLSTM

9813477d85b243e9893d99b66ac9d39a.png

《Concept Sliders: LoRA Adaptors for Precise Control in Diffusion Models》(2023) 

GitHub: github.com/rohitgandikota/sliders 

c7cb9109e022cb752543f3b0a272a71b.png

《minimax: Efficient Baselines for Autocurricula in JAX》(2023) 

GitHub: github.com/facebookresearch/minimax

e174f69f083876fcf4a0d00d92e7b9a8.png

《SelfOcc: Self-Supervised Vision-Based 3D Occupancy Prediction》(2023) 

GitHub: github.com/huang-yh/SelfOcc

《Advancing Transformer Architecture in Long-Context Large Language Models: A Comprehensive Survey》(2023) 

GitHub: github.com/Strivin0311/long-llms-learning

67133c5f4af24c697640a28f7eadef59.png

《Mobile-Seed: Joint Semantic Segmentation and Boundary Detection for Mobile Robots》(2023) 

GitHub: github.com/WHU-USI3DV/Mobile-Seed

0d527092ebb9f0b441ec075684a6e964.png

《GPQA: A Graduate-Level Google-Proof Q&A Benchmark》(2023) 

GitHub: github.com/idavidrein/gpqa

《Revolutionizing Generic Anomaly Detection: GPT-4V Takes the Lead》(2023) 

GitHub: github.com/caoyunkang/GPT4V-for-Generic-Anomaly-Detection

fa23459494375ab50a65bfdb7d402b8f.png

fed206eacfdc855d419f40bb88d613d6.png

《V4d: Voxel for 4d novel view synthesis》(2023) 

GitHub: github.com/GANWANSHUI/V4D

8c141b40661d8ab357a67ccebae249e8.png

《Model Predictive Optimized Path Integral Strategies》(2023) 

GitHub: github.com/sisl/MPOPIS

989bba0ea7872b2e42e9a07dd08fff05.gif

《VFLAIR: A Research Library and Benchmark for Vertical Federated Learning》(2023) 

GitHub: github.com/FLAIR-THU/VFLAIR

7bf1171e80a93ded5685e663235ef047.png

《SparseTrack: Multi-Object Tracking by Performing Scene Decomposition based on Pseudo-Depth》(2023) 

GitHub: github.com/hustvl/SparseTrack

7c1818784ae986f42bbc6df766dc284d.png

《MM-BigBench: Evaluating Multimodal Models on Multimodal Content Comprehension Tasks》(2023) 

GitHub: github.com/declare-lab/MM-BigBench

《FusionFrames: Efficient Architectural Aspects for Text-to-Video Generation Pipeline》(2023) 

GitHub: github.com/ai-forever/KandinskyVideo

7c6ab9b5a595ba21b26afd0269faea48.jpeg

3ffe3a8d1fd5eec5a80645c61bb7e38e.gif

"A car moving on the road from the sea to the mountains"

《Large Language Models as Optimizers》(2023) 

GitHub: github.com/google-deepmind/opro

4422a7d8ad9457840b4fe5c55ba4a4f0.png

《Exchange means change: an unsupervised single-temporal change detection framework based on intra- and inter-image patch exchange》(2023) 

GitHub: github.com/ChenHongruixuan/I3PE

e4a966f123f59ded89483f0d16f9d5d5.png

《Diffuse, Attend, and Segment: Unsupervised Zero-Shot Segmentation using Stable Diffusion》(2023) 

GitHub: github.com/google/diffseg

© THE END 

9a09e229023a91b2f1d820e830221d17.gif

转载请联系本公众号获得授权

0d78beed00033fbfd58aa38b78e79ab7.gif

计算机视觉研究院学习群等你加入!

ABOUT

计算机视觉研究院

计算机视觉研究院主要涉及深度学习领域,主要致力于目标检测、目标跟踪、图像分割、OCR、模型量化、模型部署等研究方向。研究院每日分享最新的论文算法新框架,提供论文一键下载,并分享实战项目。研究院主要着重”技术研究“和“实践落地”。研究院会针对不同领域分享实践过程,让大家真正体会摆脱理论的真实场景,培养爱动手编程爱动脑思考的习惯!

81557f28b14cb1ab3dd9f4856959ab78.png

 往期推荐 

本文内容由网友自发贡献,转载请注明出处:https://www.wpsshop.cn/w/你好赵伟/article/detail/387734?site

推荐阅读
相关标签