赞
踩
适逢非关系数据库老师布置了课后作业,要我们搭建一个Hbase和MongoDB数据库,而我又得知Hbase可以通过集群搭建提高性能,所以我打算在自己的桌面环境下尝试一下,过程中遇到的一些问题,我会记录在这里。
OS : Ubuntu 16.04
JDK : 1.8
Hadoop : 3.2.1
服务器 | IP地址 |
---|---|
hadoop-master | 192.168.41.141 |
hadoop-node01 | 192.168.41.142 |
hadoop-node02 | 192.168.41.143 |
sudo vi /etc/hosts
加入如下几行:
192.168.41.141 hadoop-master
192.168.41.142 hadoop-node01
192.168.41.143 hadoop-node02
三台服务器的host文件都需要修改,修改之后运行命令source /etc/hosts
使其生效。
首先需要通过创建SSH实现三台服务器之间的免密登陆。
ssh-keygen -t rsa
生成的公钥保存在~/.ssh
下,此时需要把公钥放入authorized_keys
,命令如下:
cat ~/.ssh/id_rsa.pub > ~/.ssh/authorized_keys
之后,我们应该在另外两台服务器上创建SSH,并且将自己服务器上的公钥放入Master服务器的authorized_keys
里,实现三台服务器之间的免密登陆。
这里我为了方便,我直接将~/.ssh
复制到了另外两台服务器的~/
位置:
scp -r ~/.ssh root@hadoop-node01:~/.ssh
scp -r ~/.ssh root@hadoop-node02:~/.ssh
通过如下命令即可验证配置成功:
root@hadoop-master:/# ssh hadoop-node01
Welcome to Ubuntu 16.04 LTS (GNU/Linux 4.4.0-21-generic x86_64)
* Documentation: https://help.ubuntu.com/
234 packages can be updated.
149 updates are security updates.
Last login: Mon Sep 30 11:09:53 2019 from ::1
运行命令
wget https://mirrors.tuna.tsinghua.edu.cn/apache/hadoop/common/stable/hadoop-3.2.1-src.tar.gz
解压
tar -zxvf hadoop-3.2.1-src.tar.gz
vi hadoop-env.sh
//添加JDK安装路径
export JAVA_HOME=/usr/local/jdk/jdk1.8.0_221/
vi core-site.xml //添加如下配置 <configuration> //文件系统用HDFS <property> <name>fs.default.name</name> //namenode的地址 <value>hdfs://hadoop-master:9000</value> </property> <property> //临时文件的存放路径 <name>hadoop.tmp.dir</name> <value>/root/hadoop/hdfs/tmp</value> </property> </configuration>
vi mapred-site.xml
//添加如下配置
<configuration>
//配置mapreduce运行的平台,默认为local本地平台模拟运行,而不是在集群上分布式运行,只是一个单机的程序,这里配置yarn平台运行,负责分配内存
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
</configuration>
vi yarn-site.xml <configuration> //指定yarn的resourcemanager地址 <property> <name>yarn.resourcecemanager.hostname</name> <value>hadoop-master</value> </property> //reducer获取数据方式 <property> <name>yarn.nodemanager.aux-services</name> <value>mapreduce_shuffle</value> </property> //忽略虚拟内存的检查,如果是在实体机上,并且内存够多,可以去掉 <property> <name>yarn.nodemanager.vmem-check-enabled</name> <value>false</value> </property> </configuration>
//添加如下内容 <configuration> //hdfs的副本数量 <property> <name>dfs.replication</name> <value>2</value> </property> //Hadoop NameNode运行端口,在通过192.168.41.141:50070访问 <property> <name>dfs.namenode.http-address</name> <value>hadoop-master:50070</value> </property> //存储上传数据的路径 <property> <name>dfs.name.dir</name> <value>/root/hadoop/hdfs/data</value> </property> //存储namenode的路径 <property> <name>dfs.name.dir</name> <value>/root/hadoop/hdfs/name</value> </property> //设置为false可以不用检查路径 <property> <name>dfs.permissions</name> <value>false</value> </property> </configuration>
在Hadoop:2.9.1版本中,该配置文件为slaves
,但是在3.2版本中,文件更名为workers
,在部署过程中,这里尤其要注意,我就是因为没有注意,在master上开启Hadoop后,Node节点上并没有相继运行datanode
和nodemanager
。
vi workers
//添加如下内容
hadoop-node01
hadoop-node02
将修改后的Hadoop文件夹拷贝至Node01、Node02节点上:
scp -r /root/hadoop root@hadoop-node01:/root/
scp -r /root/hadoop root@hadoop-node02:/root/
并且修改环境变量,添加如下:
vi /etc/profile
//添加如下
export HADOOP_HOME=~/hadoop/
export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_HOME/lib/native
export HADOOP_OPTS=-Djava.library.path=$HADOOP_HOME/lib
export PATH=$JAVA_HOME/bin:$JAVA_HOME/jre/bin:$PATH:$HOME/bin:$HADOOP_HOME/bin:$HADOOP_HOME/sbin
执行start-all.sh
启动Hadoop:
root@hadoop-master:~/hadoop/etc/hadoop# start-all.sh
Starting namenodes on [hadoop-master]
Starting datanodes
Starting secondary namenodes [hadoop-master]
2019-09-30 19:10:07,637 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Starting resourcemanager
Starting nodemanagers
在Master节点上可以通过执行jps
命令查看启动的进程:
root@hadoop-master:~/hadoop/etc/hadoop# jps
20241 Jps
19857 SecondaryNameNode
126115 NodeManager
125540 DataNode
20088 ResourceManager
19626 NameNode
Node节点上:
root@hadoop-node01:~/hadoop/etc/hadoop# jps
122113 NodeManager
121974 DataNode
122942 Jps
至此,Hadoop部署成功。
可以在通过访问192.168.41.141:50070访问web页面:
wget http://mirror.bit.edu.cn/apache/hbase/2.2.1/hbase-2.2.1-bin.tar.gz
解压
tar -zxvf hbase-2.2.1-bin.tar.gz
重命名
mv hbase-2.2.1 hbase
把Hbase的路径添加到环境变量中:
vi /etc/profile
//添加如下
export HBASE_HOME=/home/wang/hbase
export PATH=$HBASE_HOME/bin:$PATH
运行source /etc/profile
使之生效。
修改如下:
# The java implementation to use. Java 1.8+ required.
export JAVA_HOME=/usr/local/jdk/jdk1.8.0_221
# Extra Java CLASSPATH elements. Optional.
export JAVA_CLASSPATH=$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar
# Where log files are stored. $HBASE_HOME/logs by default.
export HBASE_LOG_DIR=/root/hbase/logs
# Tell HBase whether it should manage it's own instance of ZooKeeper or not.
export HBASE_MANAGES_ZK=tru
修改如下:
<configuration> <property> <name>hbase.master</name> <value>hadoop-master:6000</value> </property> <property> <name>hbase.rootdir</name> <value>hdfs://hadoop-master:9000/hbase</value> </property> <property> <name>hbase.cluster.distributed</name> <value>true</value> </property> <property> <name>hbase.tmp.dir</name> <value>/root/hbase/tmp</value> </property> <property> <name>hbase.zookeeper.property.dataDir</name> <value>/root/zookeeper</value> </property> <property> <name>hbase.zookeeper.quorum</name> <value>hadoop-master,hadoop-node01,hadoop-node02</value> </property> </configuration>
修改如下:
hadoop-node01
hadoop-node02
将修改后的Hbase文件夹拷贝至Node01、Node02节点上:
scp -r /root/hbase root@hadoop-node01:/root/
scp -r /root/hbase root@hadoop-node02:/root/
并且修改环境变量。
执行start-hbse.sh
启动Hbase:
root@hadoop-master:~/zookeeper# start-hbase.sh SLF4J: Class path contains multiple SLF4J bindings. SLF4J: Found binding in [jar:file:/root/hadoop/share/hadoop/common/lib/slf4j-log4j12-1.7.25.jar!/org/slf4j/impl/StaticLoggerBinder.class SLF4J: Found binding in [jar:file:/root/hbase/lib/client-facing-thirdparty/slf4j-log4j12-1.7.25.jar!/org/slf4j/impl/StaticLoggerBinder. SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation. SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory] SLF4J: Class path contains multiple SLF4J bindings. SLF4J: Found binding in [jar:file:/root/hadoop/share/hadoop/common/lib/slf4j-log4j12-1.7.25.jar!/org/slf4j/impl/StaticLoggerBinder.class SLF4J: Found binding in [jar:file:/root/hbase/lib/client-facing-thirdparty/slf4j-log4j12-1.7.25.jar!/org/slf4j/impl/StaticLoggerBinder. SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation. SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory] hadoop-master: running zookeeper, logging to /root/hbase/logs/hbase-root-zookeeper-hadoop-master.out hadoop-node02: running zookeeper, logging to /root/hbase/logs/hbase-root-zookeeper-hadoop-node02.out hadoop-node01: running zookeeper, logging to /root/hbase/logs/hbase-root-zookeeper-hadoop-node01.out running master, logging to /root/hbase/logs/hbase-root-master-hadoop-master.out hadoop-node01: running regionserver, logging to /root/hbase/logs/hbase-root-regionserver-hadoop-node01.out hadoop-node02: running regionserver, logging to /root/hbase/logs/hbase-root-regionserver-hadoop-node02.out
运行bash shell:
至此,集群下的Hbase搭建完成。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。