当前位置:   article > 正文

AI上推荐 之 NeuralCF与PNN模型(改变特征交叉方式)_神经网络交叉变换

神经网络交叉变换

1. 前言

随着信息技术和互联网的发展, 我们已经步入了一个信息过载的时代,这个时代,无论是信息消费者还是信息生产者都遇到了很大的挑战:

  • 信息消费者:如何从大量的信息中找到自己感兴趣的信息?
  • 信息生产者:如何让自己生产的信息脱颖而出, 受到广大用户的关注?

为了解决这个矛盾, 推荐系统应时而生, 并飞速前进,在用户和信息之间架起了一道桥梁,一方面帮助用户发现对自己有价值的信息, 一方面让信息能够展现在对它感兴趣的用户前面。 推荐系统近几年有了深度学习的助推发展之势迅猛, 从前深度学习的传统推荐模型(协同过滤,矩阵分解,LR, FM, FFM, GBDT)到深度学习的浪潮之巅(DNN, Deep Crossing, DIN, DIEN, Wide&Deep, Deep&Cross, DeepFM, AFM, NFM, PNN, FNN, DRN), 现在正无时无刻不影响着大众的生活。

推荐系统通过分析用户的历史行为给用户的兴趣建模, 从而主动给用户推荐给能够满足他们兴趣和需求的信息, 能够真正的“懂你”。 想上网购物的时候, 推荐系统在帮我们挑选商品, 想看资讯的时候, 推荐系统为我们准备了感兴趣的新闻, 想学习充电的时候, 推荐系统为我们提供最合适的课程, 想消遣放松的时候, 推荐系统为我们奉上欲罢不能的短视频…, 所以当我们淹没在信息的海洋时, 推荐系统正在拨开一层层波浪, 为我们追寻多姿多彩的生活!

这段时间刚好开始学习推荐系统, 通过王喆老师的《深度学习推荐系统》已经梳理好了知识体系, 了解了当前推荐系统领域各种主流的模型架构

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/你好赵伟/article/detail/494608
推荐阅读
相关标签
  

闽ICP备14008679号