当前位置:   article > 正文

电商数仓DWD层用户行为日志解析_数据仓库一个用户行为日志表,下游想要一些点击、点赞、分享之类的专项分析,要如何

数据仓库一个用户行为日志表,下游想要一些点击、点赞、分享之类的专项分析,要如何


前言

学习尚硅谷电商数仓项目笔记,以下是自己记录的DWD层用户行为日志解析的一些理解以及要点


一、页面埋点日志、启动日志结构

启动日志结构
在这里插入图片描述
页面埋点日志结构
在这里插入图片描述

DWD层用户行为日志解析,主要是将ODS层中的 ods_log 日志解析出来
主要有以下5张表:

  • 启动日志表
  • 页面日志表
  • 动作日志表
  • 曝光日志表
  • 错误日志表

二、日志解析的流程

  1. 首先要明白 DWD 层存的是最明细的数据,那么一行数据应该代表的是一个明细的操作
  2. 根据需求明确需要创建哪些字段、建表
  3. 由于 ODS 层中存储的是一些 JSON 字符串,用 get_json_object 解析字符串,得到想要的字段

2.1 启动日志表解析(包括注意事项)

2.1.1 解析思路

该表中一行对应一个明细的启动记录,应当包含日志中的公共信息和启动信息

2.1.2 建表语句

drop table if exists dwd_start_log;
CREATE EXTERNAL TABLE dwd_start_log(
    `area_code` string COMMENT '地区编码',
    `brand` string COMMENT '手机品牌', 
    `channel` string COMMENT '渠道', 
    `model` string COMMENT '手机型号', 
    `mid_id` string COMMENT '设备id', 
    `os` string COMMENT '操作系统', 
    `user_id` string COMMENT '会员id', 
    `version_code` string COMMENT 'app版本号', 
    `entry` string COMMENT ' icon手机图标  notice 通知   install 安装后启动',
    `loading_time` bigint COMMENT '启动加载时间',
    `open_ad_id` string COMMENT '广告页ID ',
    `open_ad_ms` bigint COMMENT '广告总共播放时间', 
    `open_ad_skip_ms` bigint COMMENT '用户跳过广告时点', 
    `ts` bigint COMMENT '时间'
) COMMENT '启动日志表'
PARTITIONED BY (dt string) -- 按照时间创建分区
stored as parquet -- 采用parquet列式存储
LOCATION '/warehouse/gmall/dwd/dwd_start_log' -- 指定在HDFS上存储位置
TBLPROPERTIES('parquet.compression'='lzo') -- 采用LZO压缩为parquet内部的列进行压缩
;
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22

2.1.3 数据导入

SET hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table dwd_start_log partition(dt='2020-06-14')
select 
    get_json_object(line,'$.common.ar'),
    get_json_object(line,'$.common.ba'),
    get_json_object(line,'$.common.ch'),
    get_json_object(line,'$.common.md'),
    get_json_object(line,'$.common.mid'),
    get_json_object(line,'$.common.os'),
    get_json_object(line,'$.common.uid'),
    get_json_object(line,'$.common.vc'),
    get_json_object(line,'$.start.entry'),
    get_json_object(line,'$.start.loading_time'),
    get_json_object(line,'$.start.open_ad_id'),
    get_json_object(line,'$.start.open_ad_ms'),
    get_json_object(line,'$.start.open_ad_skip_ms'),
    get_json_object(line,'$.ts')
from ods_log
where dt='2020-06-14'
and get_json_object(line,'$.start') is not null;
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20

2.1.4 注意事项

  1. 建表时要注意是分区表,采用 parquet 列式存储是因为后续数仓中不会查询表的所有字段,只是查询某些字段做分组聚合,采用列式存储查询效率会高些
  2. 文件采用 parquet + lzo 格式,lzo对parquet内部的列进行压缩,由于parquet 是支持切片的,因此不需要再创建lzo索引了
  3. 导入数据时采用的是 insert overwrite 策略,这样如果导数据失败时,可以覆盖之前的数据
  4. hive 默认的 InputFormat 格式
    hive (gmall)> set hive.input.format;
    hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat
    
    • 1
    • 2
    如果查询语句执行 MR 任务,默认采用的是CombineHiveInputFormat,不能识别lzo.index为索引文件,将索引文件当做普通文件进行合并处理,这样回导致 LZO 文件无法切片(因为索引文件被合并了),因此需求修改CombineHiveInputFormat为HiveInputFormat

2.2 页面日志表解析

2.2.1 解析思路

与启动日志表同理,页面日志表中每行数据对应一次明细的页面访问记录,应当包含公共信息核页面信息。建表语句和导入数据语句和启动日志表基本一致,这里不在赘述,可见下文中的脚本

2.3 启动日志表解析

2.3.1 解析思路

动作日志表中每行数据对应用户的一个动作记录,一个动作记录应当包含公共信息、页面信息以及动作信息。可是现在的问题是,动作记录是包含在一个 action 字段数组中,这时候需要通过 UDTF 函数将action数组炸开,然后在解析每个字段
在这里插入图片描述

2.3.2 建表语句

drop table if exists dwd_action_log;
CREATE EXTERNAL TABLE dwd_action_log(
    `area_code` string COMMENT '地区编码',
    `brand` string COMMENT '手机品牌', 
    `channel` string COMMENT '渠道', 
    `model` string COMMENT '手机型号', 
    `mid_id` string COMMENT '设备id', 
    `os` string COMMENT '操作系统', 
    `user_id` string COMMENT '会员id', 
    `version_code` string COMMENT 'app版本号', 
    `during_time` bigint COMMENT '持续时间毫秒', 
    `page_item` string COMMENT '目标id ', 
    `page_item_type` string COMMENT '目标类型', 
    `last_page_id` string COMMENT '上页类型', 
    `page_id` string COMMENT '页面id ',
    `source_type` string COMMENT '来源类型', 
    `action_id` string COMMENT '动作id',
    `item` string COMMENT '目标id ',
    `item_type` string COMMENT '目标类型', 
    `ts` bigint COMMENT '时间'
) COMMENT '动作日志表'
PARTITIONED BY (dt string)
stored as parquet
LOCATION '/warehouse/gmall/dwd/dwd_action_log'
TBLPROPERTIES('parquet.compression'='lzo');
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25

2.3.3 自定义 UDTF 函数

可参考上文

https://editor.csdn.net/md/?articleId=114650015
  • 1

2.3.4 数据导入

SET hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table dwd_action_log partition(dt='2020-06-14')
select
    get_json_object(line,'$.common.ar'),
    get_json_object(line,'$.common.ba'),
    get_json_object(line,'$.common.ch'),
    get_json_object(line,'$.common.md'),
    get_json_object(line,'$.common.mid'),
    get_json_object(line,'$.common.os'),
    get_json_object(line,'$.common.uid'),
    get_json_object(line,'$.common.vc'),
    get_json_object(line,'$.page.during_time'),
    get_json_object(line,'$.page.item'),
    get_json_object(line,'$.page.item_type'),
    get_json_object(line,'$.page.last_page_id'),
    get_json_object(line,'$.page.page_id'),
    get_json_object(line,'$.page.sourceType'),
    get_json_object(action,'$.action_id'),
    get_json_object(action,'$.item'),
    get_json_object(action,'$.item_type'),
    get_json_object(action,'$.ts')
from ods_log lateral view explode_json_array(get_json_object(line,'$.actions')) tmp as action
where dt='2020-06-14'
and get_json_object(line,'$.actions') is not null;
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24

2.4 曝光日志表解析

2.4.1 解析思路

曝光日志表中每行数据对应一个曝光记录,一个曝光记录应当包含公共信息、页面信息以及曝光信息。先将包含display字段的日志过滤出来,然后通过UDTF函数,将display数组“炸开”,这里因为 display 数组中有多个曝光记录,因此和动作日志表解析大致相同,这里不再赘述

2.5 错误日志表解析

2.5.1 解析思路

错误日志表中每行数据对应一个错误记录,为方便定位错误,一个错误记录应当包含与之对应的公共信息、页面信息、曝光信息、动作信息、启动信息以及错误信息。先将包含err字段的日志过滤出来,然后使用get_json_object函数解析所有字段。建表语句和导数据和启动日志、页面日志基本一致,这里也不再赘述

DWD层用户行为数据加载脚本

现在需要将上面各个表的导数据封装成脚本形式
脚本内容如下:

#!/bin/bash

hive=/opt/module/hive/bin/hive
APP=gmall
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "$1" ] ;then
    do_date=$1
else 
    do_date=`date -d "-1 day" +%F`
fi

sql="
SET mapreduce.job.queuename=hive;
SET hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dwd_start_log partition(dt='$do_date')
select 
    get_json_object(line,'$.common.ar'),
    get_json_object(line,'$.common.ba'),
    get_json_object(line,'$.common.ch'),
    get_json_object(line,'$.common.md'),
    get_json_object(line,'$.common.mid'),
    get_json_object(line,'$.common.os'),
    get_json_object(line,'$.common.uid'),
    get_json_object(line,'$.common.vc'),
    get_json_object(line,'$.start.entry'),
    get_json_object(line,'$.start.loading_time'),
    get_json_object(line,'$.start.open_ad_id'),
    get_json_object(line,'$.start.open_ad_ms'),
    get_json_object(line,'$.start.open_ad_skip_ms'),
    get_json_object(line,'$.ts')
from ${APP}.ods_log
where dt='$do_date'
and get_json_object(line,'$.start') is not null;


insert overwrite table ${APP}.dwd_action_log partition(dt='$do_date')
select
    get_json_object(line,'$.common.ar'),
    get_json_object(line,'$.common.ba'),
    get_json_object(line,'$.common.ch'),
    get_json_object(line,'$.common.md'),
    get_json_object(line,'$.common.mid'),
    get_json_object(line,'$.common.os'),
    get_json_object(line,'$.common.uid'),
    get_json_object(line,'$.common.vc'),
    get_json_object(line,'$.page.during_time'),
    get_json_object(line,'$.page.item'),
    get_json_object(line,'$.page.item_type'),
    get_json_object(line,'$.page.last_page_id'),
    get_json_object(line,'$.page.page_id'),
    get_json_object(line,'$.page.sourceType'),
    get_json_object(action,'$.action_id'),
    get_json_object(action,'$.item'),
    get_json_object(action,'$.item_type'),
    get_json_object(action,'$.ts')
from ${APP}.ods_log lateral view ${APP}.explode_json_array(get_json_object(line,'$.actions')) tmp as action
where dt='$do_date'
and get_json_object(line,'$.actions') is not null;


insert overwrite table ${APP}.dwd_display_log partition(dt='$do_date')
select
    get_json_object(line,'$.common.ar'),
    get_json_object(line,'$.common.ba'),
    get_json_object(line,'$.common.ch'),
    get_json_object(line,'$.common.md'),
    get_json_object(line,'$.common.mid'),
    get_json_object(line,'$.common.os'),
    get_json_object(line,'$.common.uid'),
    get_json_object(line,'$.common.vc'),
    get_json_object(line,'$.page.during_time'),
    get_json_object(line,'$.page.item'),
    get_json_object(line,'$.page.item_type'),
    get_json_object(line,'$.page.last_page_id'),
    get_json_object(line,'$.page.page_id'),
    get_json_object(line,'$.page.sourceType'),
    get_json_object(line,'$.ts'),
    get_json_object(display,'$.displayType'),
    get_json_object(display,'$.item'),
    get_json_object(display,'$.item_type'),
    get_json_object(display,'$.order')
from ${APP}.ods_log lateral view ${APP}.explode_json_array(get_json_object(line,'$.displays')) tmp as display
where dt='$do_date'
and get_json_object(line,'$.displays') is not null;

insert overwrite table ${APP}.dwd_page_log partition(dt='$do_date')
select
    get_json_object(line,'$.common.ar'),
    get_json_object(line,'$.common.ba'),
    get_json_object(line,'$.common.ch'),
    get_json_object(line,'$.common.md'),
    get_json_object(line,'$.common.mid'),
    get_json_object(line,'$.common.os'),
    get_json_object(line,'$.common.uid'),
    get_json_object(line,'$.common.vc'),
    get_json_object(line,'$.page.during_time'),
    get_json_object(line,'$.page.item'),
    get_json_object(line,'$.page.item_type'),
    get_json_object(line,'$.page.last_page_id'),
    get_json_object(line,'$.page.page_id'),
    get_json_object(line,'$.page.sourceType'),
    get_json_object(line,'$.ts')
from ${APP}.ods_log
where dt='$do_date'
and get_json_object(line,'$.page') is not null;


insert overwrite table ${APP}.dwd_error_log partition(dt='$do_date')
select
    get_json_object(line,'$.common.ar'),
    get_json_object(line,'$.common.ba'),
    get_json_object(line,'$.common.ch'),
    get_json_object(line,'$.common.md'),
    get_json_object(line,'$.common.mid'),
    get_json_object(line,'$.common.os'),
    get_json_object(line,'$.common.uid'),
    get_json_object(line,'$.common.vc'),
    get_json_object(line,'$.page.item'),
    get_json_object(line,'$.page.item_type'),
    get_json_object(line,'$.page.last_page_id'),
    get_json_object(line,'$.page.page_id'),
    get_json_object(line,'$.page.sourceType'),
    get_json_object(line,'$.start.entry'),
    get_json_object(line,'$.start.loading_time'),
    get_json_object(line,'$.start.open_ad_id'),
    get_json_object(line,'$.start.open_ad_ms'),
    get_json_object(line,'$.start.open_ad_skip_ms'),
    get_json_object(line,'$.actions'),
    get_json_object(line,'$.displays'),
    get_json_object(line,'$.ts'),
    get_json_object(line,'$.err.error_code'),
    get_json_object(line,'$.err.msg')
from ${APP}.ods_log 
where dt='$do_date'
and get_json_object(line,'$.err') is not null;
"

$hive -e "$sql"
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138

脚本注意事项:

  1. 首先要获取到日期 do_date
  2. 设置 Job 任务提交的队列 SET mapreduce.job.queuename=hive;
  3. 设置 hive 的inputformat格式(放在默认的格式合并lzo索引文件导致不能切片):SET hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
  4. 表名前要加 ${库名}
  5. 自定义 UDTF 前也要加库名:${APP}.explode_json_array()

代码如下(示例):

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
import  ssl
ssl._create_default_https_context = ssl._create_unverified_context
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

总结

本文是自己学习尚硅谷电商数仓项目过程中对DWD层用户行为日志解析的一些记录,主要内容是建表、导数据语句的注意事项以及脚本编写的一些注意点。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/你好赵伟/article/detail/554792
推荐阅读
相关标签
  

闽ICP备14008679号