当前位置:   article > 正文

【深度学习】Diffusion扩散模型的逆扩散问题

【深度学习】Diffusion扩散模型的逆扩散问题

1、前言

上一篇,我们讲了Diffusion这个模型的原理推导。但在推导中,仍然遗留了一些问题。本文将解决那些问题

参考论文:

①Variational Diffusion Models (arxiv.org)

②Tutorial on Diffusion Models for Imaging and Vision (arxiv.org)

视频:[Diffusion扩散模型补充-哔哩哔哩]

2、 q ( x t − 1 ∣ x t , x 0 ) q(x_{t-1}|x_t,x_0) q(xt1xt,x0)

在上篇文章中,我们说 q ( x t − 1 ∣ x t , x 0 ) q(x_{t-1}|x_t,x_0) q(xt1xt,x0)服从正态分布,但是并没有已与证明。那是因为我翻阅了大量的文章资料,都没有找到相关的证明过程。但是正当我放弃之际,我竟然找到了

首先,我们将这个概率利用贝叶斯公式展开
q ( x t − 1 ∣ x t , x 0 ) = q ( x t − 1 , x t ∣ x 0 ) q ( x t ∣ x 0 ) = q ( x t ∣ x t − 1 , x 0 ) q ( x t − 1 ∣ x 0 ) q ( x t ∣ x 0 ) = q ( x t ∣ x t − 1 ) q ( x t − 1 ∣ x 0 ) q ( x t ∣ x 0 ) q(x_{t-1}|x_t,x_0)=\frac{q(x_{t-1},x_t|x_0)}{q(x_{t}|x_0)}=\frac{q(x_t|x_{t-1},x_0)q(x_{t-1}|x_0)}{q(x_t|x_0)}=\frac{q(x_t|x_{t-1})q(x_{t-1}|x_0)}{q(x_t|x_0)} q(xt1xt,x0)=q(xtx0)q(xt1,xtx0)=q(xtx0)q(xtxt1,x0)q(xt1x0)=q(xtx0)q(xtxt1)q(xt1x0)
在此,得出 q ( x t − 1 ∣ x 0 ) q(x_{t-1}|x_0) q(xt1x0)为先验, q ( x t ∣ x t − 1 ) q(x_t|x_{t-1}) q(xtxt1)为似然,而 q ( x t − 1 ∣ x t , x 0 ) q(x_{t-1}|x_t,x_0) q(xt1xt,x0)则为后验

论文①里面给出这个定理

在这里插入图片描述

我在以前的文章,也推导出这样的一个定理
如果: P ( x ) ∼ N ( x ∣ μ x , Σ x ) P ( y ∣ x ) ∼ N ( y ∣ A x + B , Q ) 那么: P ( x ∣ y ) ∼ N ( x ∣ μ x − Σ x y Σ y y − 1 μ y , Σ x x − Σ x y Σ y y − 1 Σ y x )

P(x)N(x|μx,Σx)P(y|x)N(y|Ax+B,Q)P(x|y)N(x|μxΣxyΣyy1μy,ΣxxΣxyΣyy1Σyx)
\nonumber 如果:那么:P(x)N(xμx,Σx)P(yx)N(yAx+B,Q)P(xy)N(xμxΣxyΣyy1μy,ΣxxΣxyΣyy1Σyx)
其中里面的 Σ x y \Sigma_{xy} Σxy表示随机变量x,y的协方差矩阵,而 μ y \mu_y μy是随机变量y的期望。都是可以求出来的

至于怎么求,而刚刚的定理是怎么来的,请看我以前写过的一篇博文:线性动态系统中的概率求解_随机动态系统 条件概率-CSDN博客

好,现在,我们不难发现, P ( x ) P(x) P(x)就是先验,而 P ( y ∣ x ) P(y|x) P(yx)则是似然, P ( x ∣ y ) P(x|y) P(xy)就是后验。

P ( x ∣ y ) P(x|y) P(xy)刚好对应上面那个 q ( x t − 1 ∣ x t , x 0 ) q(x_{t-1}|x_t,x_0) q(xt1xt,x0)。那么也就是说, P ( x t − 1 ∣ x t , x 0 ) P(x_{t-1}|x_t,x_0) P(xt1xt,x0)就是正态分布。至于是否要用刚刚的公式求出来,反而有些麻烦,其实可以直接用上一篇文章那种推导就可以了。

还有一点值得注意的是,在论文①中,里面已经强调了 q ( x t − 1 ∣ x 0 ) q(x_{t-1}|x_0) q(xt1x0)为先验, q ( x t ∣ x t − 1 ) q(x_t|x_{t-1}) q(xtxt1)为似然,而 q ( x t − 1 ∣ x t , x 0 ) q(x_{t-1}|x_t,x_0) q(xt1xt,x0)则为后验

其实论文还提出,如果似然跟先验满足刚刚提出的定理,就可以直接得到后验的公式。

我想说的是,论文只是为了得到后验的公式。如果我们不想得到后验的公式(比如我们只想知道后验是什么分布)

那么根据高斯分布的自共轭性质,如果先验和似然都是高斯分布,那么后验就是高斯分布。就能得出结论了。

3、重建损失问题

在上一篇文章中,对于重构项 E q ( x 1 ∣ x 0 ) [ log ⁡ P ( x 0 ∣ x 1 ) ] \mathbb{E}_{q(x_1|x_0)}[\log P(x_0|x_1)] Eq(x1x0)[logP(x0x1)],我们进行了一些推导

但其实,那是我自己推的,论文里面没有提到。

虽然得到了结果,但是毕竟不是论文里面的。如果你想看论文里面的推导(毕竟我写错的概率大,而论文错的概率却很小)。可以参考论文②,里面有对重构项的推导。

想看论文里面的推导(毕竟我写错的概率大,而论文错的概率却很小)。可以参考论文②,里面有对重构项的推导。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/你好赵伟/article/detail/573604
推荐阅读
相关标签
  

闽ICP备14008679号