当前位置:   article > 正文

opencv 实现特定颜色线条提取与定位_根据颜色提取线的代码

根据颜色提取线的代码

本篇文章通过调用opencv里的函数简单的实现了对图像里特定颜色提取与定位,以此为基础,我们可以实现对特定颜色物体的前景分割与定位,或者特定颜色线条的提取与定位
主要步骤:

  1. 将RGB图像转化为HSV,H表示色调(度数表示0-180),S表示饱和度(取值0-255),V表示亮度(取值0-255),不同的颜色有着不同的取值范围,一般给出如下:
    在这里插入图片描述
  2. 设定待提取颜色的HSV范围值,然后调用inRange函数实现对颜色空间的提取,该函数会将除目标颜色外的其余颜色为黑色背景,仅保留该颜色为前景
 cv2.inRange(hsv, lower_red, upper_red)
 参数解析:
第一个参数:hsv指的是原图
第二个参数:lower_red指的是图像中低于这个lower_red的值,图像值变为0
第三个参数:upper_red指的是图像中高于这个upper_red的值,图像值变为0
而在lower_red~upper_red之间的值变成255
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  1. 二值化
  2. 腐蚀与膨胀操作,去除噪点,连接断点
  3. 调用findContours函数进行轮廓检测
    cv2.findContours()函数接受的参数为二值图,即黑白的(不是灰度图)
cv2.findContours(image, mode, method[, contours[, hierarchy[, offset ]]]) 
参数解析
第一个参数是寻找轮廓的图像;
第二个参数表示轮廓的检索模式,有四种(本文介绍的都是新的cv2接口):
    cv2.RETR_EXTERNAL表示只检测外轮廓
    cv2.RETR_LIST检测的轮廓不建立等级关系
    cv2.RETR_CCOMP建立两个等级的轮廓,上面的一层为外边界,里面的一层为内孔的边界信息。如果内孔内还有一个连通物体,这个物体的边界也在顶层。
    cv2.RETR_TREE建立一个等级树结构的轮廓。
第三个参数method为轮廓的近似办法
    cv2.CHAIN_APPROX_NONE存储所有的轮廓点,相邻的两个点的像素位置差不超过1,即max(abs(x1-x2),abs(y2-y1))==1
    cv2.CHAIN_APPROX_SIMPLE压缩水平方向,垂直方向,对角线方向的元素,只保留该方向的终点坐标,例如一个矩形轮廓只需4个点来保存轮廓信息
    cv2.CHAIN_APPROX_TC89_L1,CV_CHAIN_APPROX_TC89_KCOS使用teh-Chinl chain 近似算法
返回值
cv2.findContours()函数返回三个值,一个是图像,一个是轮廓本身,还有一个是每条轮廓对应的属性。
对于轮廓是以坐标的形式返回,可以通过函数cv2.drawContours()绘制出轮廓
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  1. 绘制矩形区域对轮廓进行定位

主要代码如下:

import numpy as np
import cv2
import os
image = 'image1.jpg'
savefile = './mark1'
# image = os.listdir(image_file)
save_image = os.path.join(savefile, image)

#设定颜色HSV范围,假定为红色
redLower = np.array([156, 43, 46])
redUpper = np.array([179, 255, 255])

#读取图像
img = cv2.imread(image)

#将图像转化为HSV格式
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)

#去除颜色范围外的其余颜色
mask = cv2.inRange(hsv, redLower, redUpper)

# 二值化操作
ret, binary = cv2.threshold(mask, 0, 255, cv2.THRESH_BINARY)

#膨胀操作,因为是对线条进行提取定位,所以腐蚀可能会造成更大间隔的断点,将线条切断,因此仅做膨胀操作
kernel = np.ones((5, 5), np.uint8)
dilation = cv2.dilate(binary, kernel, iterations=1)

#获取图像轮廓坐标,其中contours为坐标值,此处只检测外形轮廓
_, contours, hierarchy = cv2.findContours(dilation, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

if len(contours) > 0:
    #cv2.boundingRect()返回轮廓矩阵的坐标值,四个值为x, y, w, h, 其中x, y为左上角坐标,w,h为矩阵的宽和高
    boxes = [cv2.boundingRect(c) for c in contours]
    for box in boxes:
        x, y, w, h = box
        #绘制矩形框对轮廓进行定位
        cv2.rectangle(img, (x, y), (x+w, y+h), (153, 153, 0), 2)
	#将绘制的图像保存并展示
	cv2.imwrite(save_image, img)
	cv2.imshow('image', img)
	cv2.waitKey(0)
	cv2.destroyAllWindows()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43

效果如图,一试卷红色批改字样为例:
原图:
在这里插入图片描述

对批改区域定位图:
在这里插入图片描述

本文内容由网友自发贡献,转载请注明出处:https://www.wpsshop.cn/w/你好赵伟/article/detail/593770
推荐阅读
相关标签
  

闽ICP备14008679号